摘要: |
为了实现高精度的电力系统负荷短期预测,该文对电力系统负荷时间序列数据分时段进行相空间重构,并计算分形维数和提取最大Lyapunov指数,经分析得出了系统负荷分时序列数据的演化具有混沌特征,由此提出了短期电力系统负荷的分时重构混沌相空间预测算法,相比目前通常采用的单一时间序列混沌预测算法,该算法具有相空间嵌入维数少和模型参数配置灵活的特点,通过电力系统负荷短期预测实例验证,结果表明该算法比单一时序混沌预测算法在预测精度上有显著提高。 |
关键词: 系统负荷 分时重构 相空间 混沌预测 |
DOI: |
|
基金项目: |
|
|
|
() |
Abstract: |
|
Key words: |