摘要: |
考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locally linear embedding, LLE)对24维负荷数据进行非线性降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。 |
关键词: 负荷预测 流形学习 局部线性嵌入 非线性降维 最小二乘支持向量机 |
DOI:10.7667/j.issn.1674-3415.2012.07.005 |
|
基金项目: |
|
|
|
() |
Abstract: |
|
Key words: |