引用本文: | 陈凡,刘海涛,黄正,张雪娇.基于改进k-均值聚类的负荷概率模型[J].电力系统保护与控制,2013,41(22):128-133.[点击复制] |
CHEN Fan,LIU Hai-tao,HUANG Zheng,ZHANG Xue-jiao.Probabilistic load model based on improved k-means clustering algorithm[J].Power System Protection and Control,2013,41(22):128-133[点击复制] |
|
摘要: |
提出采用改进的k-均值聚类方法对电力系统小时负荷进行聚类,避免了传统k-均值聚类存在的聚类中心初始值难以确定、聚类结果不稳定的问题。在建立聚类负荷模型的基础上,进一步建立了考虑负荷不确定性和相关性的负荷概率模型。RBTS和IEEE RTS79算例分析结果表明,采用所建立的聚类负荷模型时的发电系统可靠性计算结果精度高,节省了状态抽样法的计算时间;负荷不确定性和相关性对发电系统可靠性有较大影响。所建立的负荷概率模型为采用解析法和状态抽样法进行发电和发输电系统可靠性评估提供了基础。 |
关键词: k-均值聚类 层次聚类 负荷模型 不确定性 相关性 |
DOI:10.7667/j.issn.1674-3415.2013.22.021 |
|
基金项目:南京工程学院科研基金项目(QKJA2011003);江苏省教育厅自然科学基金项目(11KJB470008);南京工程学院大学生科技创新基金项目(N20130422,N20130407) |
|
Probabilistic load model based on improved k-means clustering algorithm |
CHEN Fan1,2,LIU Hai-tao1,HUANG Zheng1,ZHANG Xue-jiao1 |
() |
Abstract: |
To avoid the difficulty of choosing initial cluster centers and clustering number for the k-means algorithm, an improved k- means clustering algorithm is proposed to build multistep load model from the hourly load data. The extended probabilistic load model considering bus load uncertainty and correlation is built. RBTS and IEEE RTS79 reliability test system is used to validate the proposed load model. Case studies show that the result based on proposed load model has high accuracy and it saves the calculation time when adopting the state sampling method; the uncertainty and correlation of bus loads have great effect on the adequacy indices of generating system. The proposed load model is helpful for the generation and composite system’s reliability assessment. |
Key words: k -means algorithm hierarchical clustering load model uncertainty correlation |