引用本文: | 赵建青,姚瑶,邱玩辉,等.基于输电线路在线巡视系统的智能预警系统研究[J].电力系统保护与控制,2013,41(23):49-54.[点击复制] |
ZHAO Jian-qing,YAO Yao,QIU Wan-hui,et al.Study on intelligent early warning system based on transmission line on-line inspection system[J].Power System Protection and Control,2013,41(23):49-54[点击复制] |
|
本文已被:浏览 4287次 下载 182次 |
码上扫一扫! |
基于输电线路在线巡视系统的智能预警系统研究 |
赵建青1,姚瑶2,3,邱玩辉1,唐金锐2,3,刘洪洁1,李振宇1,陈旭2,3,谢敬2,3,尹项根2,3 |
|
(1.广东电网公司江门供电局,广东 江门 529000;2.电力安全与高效湖北省重点实验室(华中科技大学),湖北 武汉 430074;3.强电磁工程与新技术国家重点实验室(华中科技大学),湖北 武汉 430074) |
|
摘要: |
以提高输电线路安全性和可靠性为目的,研究基于输电线路在线巡视系统的智能预警系统的原理。一种新的在线巡视系统采用可视监控、红外成像等技术,通过逐塔配置来替代人工巡视功能,并结合OPGW光电分离和EPON通信新技术实现海量数据的传输,在此基础上构建采用分级结构的智能预警系统。第一级位于杆塔终端主机,通过杆塔就地监测信息对输电线路的故障或异常状态进行初步判断,如利用图像差分等方法;第二级位于后台主机系统,通过系统建模与综合分析精确判断输电线路故障类型,如模糊评判方法。该智能预警系统的运用,可有效实现输电线路及其设备故障异常的智能识别。 |
关键词: 输电线路 在线巡视 智能预警 故障异常识别 图像识别 |
DOI:10.7667/j.issn.1674-3415.2013.23.008 |
|
基金项目:国家自然科学基金资助项目(50877031);广东电网公司科技项目(K-GD2012-459) |
|
Study on intelligent early warning system based on transmission line on-line inspection system |
ZHAO Jian-qing1,YAO Yao2,3,QIU Wan-hui1,TANG Jin-rui2,3,LIU Hong-jie1,LI Zhen-yu1,CHEN Xu2,3,XIE Jing2,3,YIN Xiang-gen2,3 |
() |
Abstract: |
To improve the safety and reliability of transmission lines, the principle of intelligent early warning system based on transmission line on-line inspection system is researched. Transmission line on-line inspection system replaces manual inspection by using visual supervisory, infrared imaging, OPGW optical-electric separation technique and EPON communications technology. On this basis, an intelligent early warning system using hierarchical structure is proposed. This system has two stages. The first stage is located in the central processing unit on each tower, which is used to preliminarily judge a fault state or an abnormal state of transmission lines. The second stage is located in backend host of the on-line inspection system, which is used to accurately determine the type of transmission line fault. This intelligent early warning system can realize the fault state or abnormal state of transmission lines effectively. |
Key words: transmission line on-line inspection intelligent early-warning fault state or abnormal state identification image recognition |