引用本文: | 钟清,张文峰,余南华,李兰芳,王玲.主动配电网谐波预测预警方法的研究[J].电力系统保护与控制,2014,42(23):50-56.[点击复制] |
ZHONG Qing,ZHANG Wen-feng,YU Nan-hua,LI Lan-fang,WANG Ling.Research on harmonic forecasting and warning of active distribution network[J].Power System Protection and Control,2014,42(23):50-56[点击复制] |
|
摘要: |
提出了一种用于主动配电网谐波预测预警的方法。基于随机求和原理考虑间歇式能源投入或切出主动配电网后引起的谐波变化,对间歇式能源并网或脱网后主动配电网的谐波进行预测,作为主动配电网协调控制新能源的依据。考虑间歇式能源投入主动配电网后引起的谐波变化较大,采用云模型对谐波电流建模,利用云模型的熵来衡量正常运行方式时谐波电流的波动范围,从而确定出间歇式能源并网前后谐波电流的异常阈值。将实测数据与谐波异常阈值比较,可判断谐波电流是否异常,从而实现谐波电流预警。仿真和工程算例验证了该方法的实用性和有效性。 |
关键词: 谐波 主动配电网 预测 预警 云模型 |
DOI:10.7667/j.issn.1674-3415.2014.23.008 |
投稿时间:2014-02-20修订日期:2014-05-15 |
基金项目:国家高技术研究发展计划(863计划)(2012AA050212) |
|
Research on harmonic forecasting and warning of active distribution network |
ZHONG Qing,ZHANG Wen-feng,YU Nan-hua,LI Lan-fang,WANG Ling |
(Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080, China) |
Abstract: |
A method used for harmonic forecasting and warning of active distribution network is put forward. Considering harmonic change caused by intermittent energy based on the principle of random sum, it forecasts the harmonic of active distribution network after intermittent energy inputting or cutting out from the network. So it will be used as the basis of coordinated control of the new energy for active distribution network. Considering the harmonic changes caused by intermittent energy inputting active distribution network is big, it adopts the cloud model to model the harmonic current, and uses the entropy of cloud model to measure the harmonic current fluctuation range of normal operation mode, so as to determine the intermittent energy grid and harmonic current anomaly threshold. The harmonic current abnormal or not is judged by the comparison between measured data and harmonic anomaly threshold, and so the harmonic warning is realized. Simulation and engineering examples verify the practicability and effectiveness of the proposed method. |
Key words: harmonic active distribution network forecast early warning cloud model |