引用本文: | 王涛,张宁,刘琳,杨超.有源电子式互感器故障诊断技术的研究与应用[J].电力系统保护与控制,2015,43(18):74-79.[点击复制] |
WANG Tao,ZHANG Ning,LIU Lin,YANG Chao.Research and application of electronic transformer fault diagnosis[J].Power System Protection and Control,2015,43(18):74-79[点击复制] |
|
摘要: |
作为继电保护和自动化装置的信息源头,电子式互感器的运行性能直接影响整个电网,由于受到环境和电磁辐射的影响,其输出信号的稳定性是智能变电站普及推广应用的瓶颈。通过对电子式互感器运行中的故障类型进行分类,采用分段函数模拟不同的故障类型,利用小波理论分析对故障信号进行除噪处理,再通过小波分解对除噪后的信号进行故障检测定位,归纳为小波-神经网络的故障诊断分析方法。该方法能够直接判别漂移偏差故障、固定偏差故障和变比偏差故障,对提高智能变电站运行可靠性具有前瞻性的意义。 |
关键词: 电子式互感器 故障诊断 小波变换 人工神经网络 分段函数 |
DOI:10.7667/j.issn.1674-3415.2015.18.013 |
投稿时间:2014-12-01修订日期:2015-01-30 |
基金项目: |
|
Research and application of electronic transformer fault diagnosis |
WANG Tao,ZHANG Ning,LIU Lin,YANG Chao |
(State Grid Zibo Electric Power Company, Zibo 255095, China) |
Abstract: |
As the information source of relay protection and automation devices, the operation performance of electronic transformer will directly affect the grid. Influenced by environment and electromagnetic radiation, the stability of its output signal becomes the bottleneck of popularization and application for intelligent substation. By means of classifying the fault types of electronic transformer in operation, the different fault types with the piecewise function are simulated and fault signal with wavelet theory analysis is denoised. Then, by means of fault detection and location of the denoised signal with wavelet decomposition, a method of wavelet-neural network for fault diagnosis analysis is deduced which can directly distinguish the drift deviation fault, fixed deviation fault and transformation ratio deviation fault. It will be a prospective significance for improving the operation reliability of the intelligent substation. |
Key words: electronic transformer fault diagnosis wavelet transform artificial neural network piecewise function |