引用本文: | 胡飞虎,李威,冯轩,Anjum ZESHAN.基于不同目标的电网分区域调度研究[J].电力系统保护与控制,2015,43(19):22-28.[点击复制] |
HU Feihu,LI Wei,FENG Xuan,Anjum ZESHAN.Research of sub-regional grid dispatching based on different objectives[J].Power System Protection and Control,2015,43(19):22-28[点击复制] |
|
摘要: |
针对电网分区域调度问题,提出基于不同目标的多节点连接的网络模型进行求解。网络模型以复杂网络为理论基础,由发电端、中间点、用电端、连接边等组成,对网络模型进行数学及图形描述,并建立相应的数学模型。通过遗传算法来求解基于模型建立的两区域算例,两区域分别以碳排放最小的单目标为第一子目标,购电成本最小及煤耗最小的双目标为第二子目标,采用加权的方法使两子目标相结合转化为单目标求解,通过编程优化计算得出满足调度目标的电量分配结果。由算例可验证,所提出的模型可用于主网实现分别以不同的调度策略为优化目标的分区域调度。 |
关键词: 分区域调度 复杂网络 网络建模 遗传算法 分布式计算 |
DOI:10.7667/j.issn.1674-3415.2015.19.004 |
投稿时间:2014-12-30修订日期:2015-04-08 |
基金项目:国家自然科学基金项目(61174154);教育部“新世纪优秀人才支持计划” |
|
Research of sub-regional grid dispatching based on different objectives |
HU Feihu,LI Wei,FENG Xuan,Anjum ZESHAN |
(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China) |
Abstract: |
For sub-regional power grid dispatching problem, a multi-node network model based on different objectives is given. Network model is based on the theory of complex networks and composed of power generation terminal, middle terminal, utilization terminal, connecting edges, etc. The graphic description and mathematic description of the network model are made separately and the corresponding mathematic model is established. Genetic algorithm is used to solve the two regions numerical examples based on the model. The two regions take the smallest carbon emission for the first single sub-objective, and minimize the cost of purchasing electricity and coal consumption for the second dual sub-objective. The weighted method is used to combine the two sub-objective into a single objective to solve. The electricity distribution result meeting the scheduling target is calculated by programming optimization. Calculation results show that the main network achieves sub-regional dispatching with two sub-regions taking environmental and economic dispatch as objectives respectively. |
Key words: sub-regional dispatching complex network network modeling genetic algorithm distributed power flow computation |