引用本文: | 刘刚,李炀,陈垣,董选昌.基于电磁-热耦合模型的架空导线温度分布和径向温差的计算与实验验证[J].电力系统保护与控制,2018,46(7):7-13.[点击复制] |
LIU Gang,LI Yang,CHEN Yuan,DONG Xuanchang.Calculation and experiment verification on temperature distribution and radial temperature of overhead transmission line based on electromagnetic-thermal coupling fields[J].Power System Protection and Control,2018,46(7):7-13[点击复制] |
|
摘要: |
为了得到架空导线的径向温度场分布,以LGJ240/30 mm2导线为例,建立了架空线径向截面电磁-温度耦合场控制方程,采用有限元分析软件,对导线截面电磁场分布以及温度分布进行迭代计算。基于计算结果,探究了电流密度分布以及径向温度分布的规律和成因。通过设计并搭建室内大电流实验平台,对仿真计算结果进行了验证。在自然对流情况下,导线钢芯温度、铝层温度以及铝层表面温度平均误差仅为1.72%。结合IEEE Std 738-2012自然对流下径向温差经验公式,比较了所建模型的准确度。对比结果表明:计算导线径向温差时,考虑集肤效应的热源分布以及空气间隙的热传导作用,计算结果误差较小。 |
关键词: 集肤效应 电流密度 温度分布 径向温差 实验验证 |
DOI:10.7667/PSPC170451 |
投稿时间:2017-03-29修订日期:2017-06-13 |
基金项目:国家高技术研究发展计划(863计划)资助(2015AA050201) |
|
Calculation and experiment verification on temperature distribution and radial temperature of overhead transmission line based on electromagnetic-thermal coupling fields |
LIU Gang,LI Yang,CHEN Yuan,DONG Xuanchang |
(School of Electric Power, South China University of Technology, Guangzhou 510640, China;Transmission Management Institute, Guangzhou Power Supply Bureau Co., Ltd, Guangzhou 510000, China) |
Abstract: |
In order to get the radial temperature distribution of overhead transmission, taking LGJ240/30 mm2 wire as an example, the control equations of the electromagnetic-thermal coupling field of radial section of overhead line are established and the electromagnetic field and the temperature distribution of the wire over cross section are calculated iteratively by using ANSYS. On the basis of calculation results, the regular pattern and cause of current density distribution and radial temperature distribution are discussed. Calculation results are verified by designing and establishing the indoor strong current experiment platform. The results show that in the case of natural convection, the average error of temperature of steel core, aluminum-layer temperature, and aluminum surface temperature is only 1.72%. The accuracy of the proposed model is compared with the experimental formula of radial temperature under natural convection combining IEEE Std 738-2012. The comparison shows that the calculation results considering the heat source distribution of skin effect and heat conduction in air gap has less error when computing conductor radial temperature. This work is supported by National High-tech R & D Program of China (863 Program) (No. 2015AA050201). |
Key words: skin effect current density temperature distribution radial temperature experimental verification |