引用本文: | 谢伟伦,薛峰,黄志威.基于网络传播特性的配电网电压暂降随机预估方法[J].电力系统保护与控制,2020,48(8):163-171.[点击复制] |
XIE Weilun,XUE Feng,HUANG Zhiwei.Stochastic estimation method of voltage sags for a distribution network based on network propagation property[J].Power System Protection and Control,2020,48(8):163-171[点击复制] |
|
摘要: |
敏感负荷的大量投运使得用户对电能质量的要求不断提高,电压暂降的快速有效预估成为当前电压暂降研究的一项重要内容。提出了一种基于网络传播特性的配电网电压暂降随机预估方法。首先基于配电网拓扑搜索电压暂降传播路径,通过序分量法获得不同路径下电压暂降的垂直/水平传播特性。进而根据路径搜索结果建立故障源至负荷侧的配电网电压暂降传播方程。最后结合不同故障类型及线路故障率计算暂降凹陷域和相应预估指标。对某实例配电网系统开展算例分析,验证了所提方法的有效性与优越性。 |
关键词: 电压暂降 配电网 传播方程 凹陷域 随机预估 |
DOI:10.19783/j.cnki.pspc.190675 |
投稿时间:2019-06-12修订日期:2019-07-20 |
基金项目:中国南方电网公司科技项目资助(GDKJXM- 20180103) |
|
Stochastic estimation method of voltage sags for a distribution network based on network propagation property |
XIE Weilun,XUE Feng,HUANG Zhiwei |
(Dongguan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Dongguan 523008, China) |
Abstract: |
The wide application of sensitive loads increases the customer requirement for power quality. The rapid and efficient assessment of voltage sag is becoming important in voltage sag study. In this paper, a stochastic estimation method of voltage sags for a distribution network based on network propagation property is proposed. First, a voltage sag propagation path is searched based on distribution network topology. With the phase component method, the vertical/horizontal propagation property of voltage sag is derived. Then the voltage sag propagation equation in a distribution network from the fault source to the load side is established according to the path search results. Finally, the area of vulnerability and the estimation index are calculated by combining different fault types and line fault rates. An example analysis of a real distribution network is given to verify validity and superiority of this method. This work is supported by Science and Technology Project of China Southern Power Grid Company (No. GDKJXM- 20180103). |
Key words: voltage sag distribution network propagation equation area of vulnerability stochastic estimation |