引用本文: | 曹 斌,刘文焯,原 帅,等.基于低电压穿越试验的光伏发电系统建模研究[J].电力系统保护与控制,2020,48(18):146-155.[点击复制] |
CAO Bin,LIU Wenzhuo,YUAN Shuai,et al.Modeling of photovoltaic power system based on low voltage ride-through test[J].Power System Protection and Control,2020,48(18):146-155[点击复制] |
|
摘要: |
为进一步提高光伏发电系统建模准确性,研究一种充分利用低电压穿越试验数据建立仿真模型的方法。以内蒙古某光伏电站500 kW光伏发电单元为研究对象,首先,基于典型低电压穿越控制策略,采用最小二乘估计法完成了逆变器低穿控制环节的参数辨识。其次,通过对光伏PV特性曲线的修正获得光伏阵列的环境参数。最后,设计了光伏阵列参数计算流程和低穿控制策略测辨流程,并选取不同电压跌落水平的4组实测数据进行测辨。测辨结果代入基于Simulink搭建的仿真模型后,经由仿真与实测数据的对比验证了所提方法的有效性。 |
关键词: 光伏发电 参数辨识 低电压穿越 最小二乘估计 |
DOI:DOI: 10.19783/j.cnki.pspc.191290 |
投稿时间:2019-10-20 |
基金项目:河北省自然科学基金项目资助(E2018502134);内蒙古电力公司2019年度科技计划项目资助 |
|
Modeling of photovoltaic power system based on low voltage ride-through test |
CAO Bin,LIU Wenzhuo,YUAN Shuai,XU Bing,JIA Jiaoxin,YAN Xiangwu |
(1. Inner Mongolia Power Research Institute, Hohhot 010020, China; 2. National Key Laboratory of Power Grid Security and
Energy Saving, China Electric Power Research Institute, Beijing 100192, China; 3. Key Laboratory of Distributed Energy
Storage and Micro-Grid of Hebei Province (North China Electric Power University), Baoding 071003, China) |
Abstract: |
In order to improve the modeling accuracy of a PV system, a method of making full use of the LVRT test data to establish a PV model is studied. A 500 kW photovoltaic unit of a photovoltaic power plant in Inner Mongolia is taken as the research object. First, based on the typical LVRT control strategy, the parameter identification of the LVRT control link is completed by the least squares estimation method. Secondly, the environmental parameters of PV arrays are obtained by modifying the PV characteristic curve. Finally, the calculation process of array parameters and the identification process of the LVRT control strategy are designed, and four groups of measured data with different voltage sag levels are selected for identification. After substituting the identification results into the simulation model based on Simulink, the validity of the proposed method is verified by comparing the simulation results with the measured data.
This work is supported by Natural Science Foundation of Hebei Province (No. E2018502134). |
Key words: photovoltaic power generation parameter identification LVRT least square estimation |