引用本文: | 曹华珍,吴亚雄,李 浩,等.基于海量数据的多维度负荷特性分析系统开发[J].电力系统保护与控制,2021,49(6):155-166.[点击复制] |
CAO Huazhen,WU Yaxiong,LI Hao,et al.Development of a multi-dimensional load characteristic analysis system based on massive data[J].Power System Protection and Control,2021,49(6):155-166[点击复制] |
|
摘要: |
随着智能电网的发展,在已知用户负荷所属行业分类的基础上,利用海量用户负荷数据进行负荷特性分析,可以提取行业典型负荷特征,为开展业扩报装工作及其他配电网规划工作提供指导,同时提高配用电的智能化水平。在此背景下,为了提高负荷特性分析工作效率,开发了基于海量数据的多维度负荷特性分析系统。首先,设计了多维度负荷特性分析的各个功能模块。然后,对负荷特性分析的多个功能进行整合,介绍了多维度用户负荷特性分析功能的实例。最后,对该系统的负荷特性分析可视化界面进行了展示说明。总的来说,所开发的多维度负荷特性分析系统以Java语言为基础,采用微服务、微应用架构,支持所有功能的灵活拓展以及各个功能块之间的快速数据传输交互,可为基于海量数据的负荷特性分析提供便利。此外,该系统底层算法能够同时支持多种语言进行开发,对于发出的计算需求可迅速做出响应。 |
关键词: 多维度负荷特征库 典型行业 微服务架构设计 功能模块化开发 数据可视化 |
DOI:DOI: 10.19783/j.cnki.pspc.200636 |
投稿时间:2020-04-16修订日期:2020-07-27 |
基金项目:中国南方电网有限责任公司科技项目资助(GDKJXM20172939) |
|
Development of a multi-dimensional load characteristic analysis system based on massive data |
CAO Huazhen1,WU Yaxiong1,LI Hao1,GAO Chong1,TANG Junxi1,GUAN Weiling1 |
(1. Power Grid Planning & Research Center, Guangdong Power Grid Co., Ltd., Guangzhou 510030, China;
2. Suzhou Huatian Power Technology Co., Ltd., Suzhou 215000, China)) |
Abstract: |
As part of the development of the smart grid, and based on the industry classification of known user loads, using massive user load data for load characteristics analysis can extract typical load characteristics of the industry and provide guidance for carrying out industry expansion installation and other distribution network planning. This can improve the intelligence level in power distribution. With this as background, to improve the efficiency of load characteristic analysis, a multi-dimensional load characteristic analysis simulation system based on massive data is designed. First, each functional module is designed for multi-dimensional load characteristics analysis. Secondly, we integrate multiple functions of load characteristic analysis in the system and describe its functions. Lastly, the interfaces of the developed system are introduced and illustrated. Overall, the system is developed based on the Java language, adopts micro-services and micro-application architecture, supports flexible expansion of all functions and fast data transmission and interaction between various functional blocks. It also facilitates the analysis of load characteristics based on massive data. In addition, the underlying algorithm can support multiple languages for development at the same time, and can quickly respond to computing needs.
This work is supported by the Science and Technology Project of China Southern Power Grid Co., Ltd. (No. GDKJXM20172939). |
Key words: multi-dimensional load signature database typical industries micro-service architecture design functional modular development data visualization |