引用本文: | 胡依林,成 奎,杨 博.阴影条件下基于集体智慧的光伏系统最大功率跟踪[J].电力系统保护与控制,2021,49(24):78-87.[点击复制] |
HU Yilin,CHENG Kui,YANG Bo.Collective intelligence-based maximum power point tracking of PV systems under partial shading condition[J].Power System Protection and Control,2021,49(24):78-87[点击复制] |
|
摘要: |
光伏阵列通常受局部阴影的影响,导致系统输出功率较低。这主要归咎于光伏阵列的功率-电压特性曲线在阴影条件下具有多个功率峰值,而常规最大功率跟踪算法易陷入局部最优。设计了一种新颖的MPPT算法,即基于动态领导的集体智慧。与传统启发式算法不同,该算法由多个子优化器组成,每个优化器同时进行全局寻优,并选择适应度函数最小(最优解)的子优化器作为其他子优化器的领导者进行后续引导。三种算例(恒定气候条件、时变气候条件和大型光伏电站)下的Matlab/Simulink仿真结果显示,所提算法与导纳增量控制法和其余五种经典的启发式算法相比,DLCI能在PSC下实现最快速与稳定的全局最大功率跟踪。最后,基于dSpace的硬件在环实验验证了所提算法的硬件实施可行性。 |
关键词: 光伏系统 基于动态领导的集体智慧 阴影条件 最大功率跟踪 硬件在环实验 |
DOI:DOI: 10.19783/j.cnki.pspc.201086 |
投稿时间:2020-11-20修订日期:2021-03-25 |
基金项目:国家自然科学基金项目资助(61963020) |
|
Collective intelligence-based maximum power point tracking of PV systems under partial shading condition |
HU Yilin,CHENG Kui,YANG Bo |
(1. Sino German Institute of Engineering, Yibin University, Yibin 644000, China;
2. Sanjiang Institute of Artificial Intelligence and Robotics, Yibin University, Yibin 644000, China;
3. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)) |
Abstract: |
PV arrays are usually affected by a partial shading condition, which leads to a relatively low power production. This is because the power-voltage curve of a PV system contains multiple peaks while the traditional Maximum Power Point Tracking (MPPT) algorithm is easily trapped at the Local Maximum Power Point (LMPP). Hence, a novel MPPT approach is provided, i.e., Dynamic Leader-based Collective Intelligence (DLCI). Unlike traditional meta-heuristic algorithms, this algorithm has a multiple sub-optimizer which seeks the optimum independently. Then, the current best optimum will be chosen as the dynamic leader to guide the other sub-optimizers thereafter. Three case studies are carried out, i.e., constant climate conditions, varying climate conditions, and a large-scale photovoltaic station. Simulation outcomes of Matlab/Simulink prove that DLCI outperforms the traditional Incremental Conductance (INC) and five other typical meta-heuristic algorithms. It can achieve the fastest and most stable global MPPT. Lastly, a dSpace based Hardware-In-the-Loop (HIL) test is carried out to validate the implementation feasibility of the DLCI algorithm.
This work is supported by the National Natural Science Foundation of China (No. 61963020). |
Key words: PV systems dynamic leader based collective intelligence partial shading condition maximum power point tracking hardware-in-loop |