引用本文: | 童潇宁,王月强,仇张权,等.基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法[J].电力系统保护与控制,2024,52(3):38-50.[点击复制] |
TONG Xiaoning,WANG Yueqiang,QIU Zhangquan,et al.Robust scheduling method for AC/DC hybrid distribution networks based on a data-driven polyhedral set[J].Power System Protection and Control,2024,52(3):38-50[点击复制] |
|
|
|
本文已被:浏览 3783次 下载 902次 |
 码上扫一扫! |
基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法 |
童潇宁1,王月强1,仇张权1,黄阳1,乐健2,任意2 |
|
(1.国网上海市电力公司长兴供电公司,上海 201913;2.武汉大学电气与自动化学院,湖北 武汉 430072) |
|
摘要: |
针对现有配电网鲁棒调度方法缺乏对不确定参数相关性问题的考虑,提出了一种基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法。首先,构建分布式光伏出力的传统多面体集合,利用历史数据驱动形成了相关性包络图,通过弯曲多面体集合边界,建立了相关性多面体集合模型。然后,在此基础上,针对相关性多面体集合存在鲁棒性差和保守性大的问题,建立了数据驱动的多面体集合模型。进一步,建立了基于数据驱动多面体集合的交直流混合配电网鲁棒调度模型,并采用列与约束生成(column and constraint generation, CCG)算法对鲁棒调度模型进行求解。最后,改进的IEEE33节点系统仿真结果表明,基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法可以减少优化结果的保守性,提高其鲁棒性,证明了所提出方法的有效性。 |
关键词: 两阶段鲁棒优化 相关性多面体集合 交直流混合配电网 经济调度 CCG算法 |
DOI:10.19783/j.cnki.pspc.230861 |
投稿时间:2023-07-07修订日期:2023-12-30 |
基金项目:国家电网有限公司科技项目资助(5209KZ220008) |
|
Robust scheduling method for AC/DC hybrid distribution networks based on a data-driven polyhedral set |
TONG Xiaoning1,WANG Yueqiang1,QIU Zhangquan1,HUANG Yang1,LE Jian2,REN Yi2 |
(1. State Grid Shanghai Changxing Power Supply Company, Shanghai 201913, China;
2. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China) |
Abstract: |
data-driven polyhedron-based robust scheduling method for AC/DC hybrid distribution networks is proposed to address the lack of consideration of uncertain parameter correlation in existing robust scheduling methods. First, a traditional polyhedral set of distributed photovoltaic output is constructed, and a correlation envelope graph is driven by historical data, and the correlation polyhedral set model is established by bending the polyhedral set boundary. Second, based on this, a data-driven polyhedral set model is established to address the issues of poor robustness and high conservatism in correlated polyhedral sets. Then, a robust scheduling model for AC/DC hybrid distribution networks based on data-driven polyhedral sets is established, and a column and constraint generation (CCG) algorithm is used to analyze the robust scheduling model. Finally, the simulation results of the improved IEEE33 node system show that the proposed scheduling method can reduce the conservatism of the optimization results and improve their robustness, proving the effectiveness of the method. |
Key words: two-stage robust optimization correlated polyhedral set AC/DC hybrid distribution network economic dispatch CCG algorithm |
|
|
|
|
|