引用本文: | 胡正伟,夏思懿,王文彬,曹旺斌,谢志远.基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法[J].电力系统保护与控制,2024,52(6):152-163.[点击复制] |
HU Zhengwei,XIA Siyi,WANG Wenbin,CAO Wangbin,XIE Zhiyuan.Multi-parameter optimal solution method for Π-type impedance matching networksbased on deep reinforcement learning[J].Power System Protection and Control,2024,52(6):152-163[点击复制] |
|
摘要: |
针对电力线信道阻抗变化复杂、负载阻抗不匹配造成通信质量差等问题,提出一种基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法,并验证分析了深度强化学习对于寻找最优匹配参数的可行性。首先,建立Π型网络结构,推导窄带匹配和宽带匹配场景下的最优匹配目标函数。其次,采用深度强化学习,利用智能体的移动模拟实际匹配网络的元件参数变化,设置含有理论值与最优匹配值参数的公式作为奖励,构建寻优匹配模型。然后,分别仿真验证了窄带匹配和宽带匹配两种应用场景并优化模型的网络参数。最后,仿真结果证明,经过训练后的最优模型运行时间较短且准确度较高,能够较好地自动匹配电力线载波通信负载阻抗变化,改善和提高电力线载波通信质量。 |
关键词: 深度强化学习 电力线通信 窄带匹配 宽带匹配 |
DOI:10.19783/j.cnki.pspc.230917 |
投稿时间:2023-07-17修订日期:2023-10-25 |
基金项目:国家自然基金面上项目资助(52177083);国家自然科学基金青年科学基金项目资助(62001166) |
|
Multi-parameter optimal solution method for Π-type impedance matching networksbased on deep reinforcement learning |
HU Zhengwei,XIA Siyi,WANG Wenbin,CAO Wangbin,XIE Zhiyuan |
(Department of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China) |
Abstract: |
There are problems of complex power line channel impedance variation and poor load impedance mismatch. Thus a multi-parameter optimal solution method for a Π-type impedance matching network based on deep reinforcement learning is proposed, and the feasibility of deep reinforcement learning for finding the optimal matching parameters is verified and analyzed. First, the Π-type network structure is established to derive the objective function for the optimal matching in the narrowband matching and broadband matching scenarios. Secondly, deep reinforcement learning is used to use the movement of the agent to simulate the component parameters of the actual matching network, and set the formula containing the theoretical value and the optimal matching value of the parameters as a reward to build the optimal matching model. Then, this paper separately verifies the network parameters of narrowband matching and broadband matching application scenarios and optimizes the network parameters of the model. Finally, the simulation results prove that the trained optimal model has short running time and high accuracy. It can better automatically match the load impedance change of power line carrier communication, and improve the quality of power line carrier communication. |
Key words: deep reinforcement learning power line communication narrowband matching broadband matching |