| 引用本文: | 张瀚宇,盘宏斌,陈燕东,等.计及频率动态响应的VSG自适应暂态稳定控制策略[J].电力系统保护与控制,2025,53(23):90-100.[点击复制] |
| ZHANG Hanyu,PAN Hongbin,CHEN Y,et al.VSG adaptive transient stability control strategy considering frequency dynamic response[J].Power System Protection and Control,2025,53(23):90-100[点击复制] |
|
| 摘要: |
| 电网大扰动故障下,虚拟同步发电机(virtual synchronous generator, VSG)存在严重的暂态失稳风险。其中功角稳定和频率稳定是VSG安全稳定运行的两个重要因素,而现有文献缺少对这两个问题的综合考虑。为此,首先建立VSG大信号等值模型,分析不同故障深度下VSG控制参数对暂态功角稳定性和频率稳定的影响,揭示了功角稳定和频率稳定之间的矛盾。然后,提出了一种基于角频率负反馈的自适应暂态控制策略。该方法通过引入虚拟惯量、虚拟阻尼和有功参考功率重塑VSG暂态特性,进而增强功角稳定和频率稳定。为了进一步优化系统暂态特性,给出一种计及频率动态响应的控制参数设计方法并定量刻画参数可行域。最后,通过Simulink仿真与RT-Lab半实物实验,验证了所提方法及参数设计的有效性。 |
| 关键词: 虚拟同步发电机 暂态稳定 功角稳定 频率稳定 动态响应 |
| DOI:10.19783/j.cnki.pspc.250038 |
| 投稿时间:2025-01-11修订日期:2025-05-09 |
| 基金项目:湖南省自然科学基金重点项目资助(2024JJ3012) |
|
| VSG adaptive transient stability control strategy considering frequency dynamic response |
| ZHANG Hanyu1,PAN Hongbin1,CHEN Yandong2,LUO Cong2,XU Jiacheng2,TAN Wenbo1 |
| (1. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China; 2. National Electric
Power Conversion and Control Engineering Technology Research Center (Hunan University), Changsha 410082, China) |
| Abstract: |
| Under large disturbances in power grids, virtual synchronous generators (VSG) face a high risk of transient instability. Among them, power angle stability and frequency stability are two key factors for ensuring safe and stable VSG operation. However, existing studies seldom consider these two aspects in an integrated manner. To address this gap, a VSG large signal equivalent model is first established, and the influence of VSG control parameters on transient power angle stability and frequency stability under different fault depths is analyzed, revealing the inherent conflict between the two stability objectives. Subsequently, an adaptive transient control strategy based on angular frequency negative feedback is proposed. By introducing virtual inertia, virtual damping, and virtual power reshaping, this method enhances both rotor angle stability and frequency stability. To further optimize the transient performance, a control parameter design method that accounts for frequency dynamic response is proposed, along with a quantitative characterization of the feasible domain of parameters. Finally, the effectiveness of the proposed method and parameter design is verified through Simulink and RT-Lab hardware-in-the-loop (HIL) platform |
| Key words: virtual synchronous generator transient stability power angle stability frequency stability dynamic response |