摘要: |
对具有混沌特性的电网售电量时间序列重构相空间,计算相空间的饱和嵌入维数和最大Lyapunov指数,并利用计算得到的饱和嵌入维数指导建立T-S模糊神经网络预测模型。采用递阶遗传算法对T-S模糊神经网络的结构和权值进行训练,可确定最适合的预测模型结构,提高神经网络的收敛速度,使其具有良好的泛化能力。在此基础上,对秦皇岛电力公司售电量数据进行预测,结果表明,该方法可精确地再现售电量时间序列的混沌动力学行为,在可预报尺度范围内,能对售电量作高精度的预测,且具有很强的适应能力。 |
关键词: 混沌 模糊神经网络 相空间 最大Lyapunov指数 售电量 预测 |
DOI:10.7667/j.issn.1674-3415.2006.17.016 |
|
基金项目: |
|
|
|
() |
Abstract: |
|
Key words: |