引用本文: | 张新萍,张孝远,刘杰.基于差分进化算法的模糊核聚类算法及其
在故障诊断中的应用[J].电力系统保护与控制,2014,42(17):102-106.[点击复制] |
ZHANG Xin-ping,ZHANG Xiao-yuan,LIU Jie.Fuzzy kernel-clustering algorithm based on differential evolution algorithm and its application in fault diagnosis[J].Power System Protection and Control,2014,42(17):102-106[点击复制] |
|
摘要: |
针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法进行数值试验,同时应用在电机轴承的故障诊断中,取得了不错的效果,验证了方法的可行性。 |
关键词: 模糊聚类 核函数 差分进化算法 故障诊断 |
DOI: |
投稿时间:2013-07-31修订日期:2013-10-25 |
基金项目:河南工业大学高层次人才基金项目(2013BS059) |
|
Fuzzy kernel-clustering algorithm based on differential evolution algorithm and its application in fault diagnosis |
ZHANG Xin-ping,ZHANG Xiao-yuan,LIU Jie |
(XJ Group Corporation, Xuchang 461000, China;College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;Henan Polytechnic, Zhengzhou 450000, China) |
Abstract: |
In allusion to the determination of the kernel parameters and the effective evaluation of the clustering results of Fuzzy Kernel-clustering Algorithm (FKCA), differential evolution algorithm (EA) is used to search the optimal kernel parameter and the clustering centers. Furthermore, the Xie-Beni index is promoted to the kernel space, and a new fitness function is designed to improve the clustering performance. The proposed method is applied in the standard benchmark as well as the motor bearing fault dataset. The results shows that the proposed method is a promising clustering method for fault diagnosis. |
Key words: fuzzy clustering kernel function differential evolution algorithm fault diagnosis |