引用本文: | 李啸骢,郑涛,梁志坚,等.微分代数模型可控制动电阻与励磁系统多指标非线性控制[J].电力系统保护与控制,2015,43(16):1-7.[点击复制] |
LI Xiaocong,ZHENG Tao,LIANG Zhijian,et al.Multi-index nonlinear control for TCBR and generator excitation based differential algebraic model[J].Power System Protection and Control,2015,43(16):1-7[点击复制] |
|
摘要: |
针对微分代数模型的水轮发电机组可控制动电阻(Thyristor Controlled Braking Resistor,TCBR)与励磁系统进行多指标非线性扰动解耦控制律设计。微分代数模型多指标非线性设计方法(Differential Algebraic System Multi-Index Nonlinear Control,DASMINC)将输出函数选取为系统关键变量线性组合的形式,通过扰动解耦设计,借助哈特曼-格鲁勃曼(Hartman-Grobman)定理,适当选取输出函数参数矩阵配置微分代数模型闭环系统平衡点处特征根位置,使系统获得优良控制性能。仿真结果表明该方法控制的TCBR与发电机励磁系统能大幅提高水电站输电系统暂态稳定性,抗扰能力强,且能很好协调各状态量的动、静态性能。 |
关键词: 可控制动电阻 发电机励磁 微分代数模型 多指标非线性控制 暂态稳定 |
DOI:10.7667/j.issn.1674-3415.2015.16.001 |
投稿时间:2014-09-13修订日期:2015-04-03 |
基金项目:国家自然科学基金资助项目(51267001);广西自然科学基金资助项目(2014GXNSFAA118338);广西科学研究与技术开发计划项目(14122006-29) |
|
Multi-index nonlinear control for TCBR and generator excitation based differential algebraic model |
LI Xiaocong,ZHENG Tao,LIANG Zhijian,XU Junhua |
(School of Electrical Engineering, Guangxi University, Nanning 530004, China) |
Abstract: |
A multi-index coordinated control method based nonlinear differential algebraic model for single machine infinite bus power system with thyristor controlled braking resistor (TCBR) is proposed. By means of Hartman-Grobman theorem, differential algebraic system multi-index nonlinear control (DASMINC) design method can reassign the closed-loop system eigenvalues of linear approximate system to the nonlinear differential algebraic system via appropriately selecting output function parameter matrix. Therefore, the system can access to good control performance and strong anti-interference ability. Simulation results show that TCBR and generator excitation system controlled by this proposed method can significantly improve power system transient stability limitation and effectively coordinate the dynamic and the steady-state performances of the system. |
Key words: thyristor controlled braking resistor (TCBR) generator excitation differential algebraic models multi-index nonlinear control transient stability |