引用本文: | 张露江,汤会增,张 利,等.大型风机风向补偿算法研究[J].电力系统保护与控制,2020,48(19):98-112.[点击复制] |
ZHANG Lujiang,TANG Huizeng,ZHANG Li,et al.Research on a wind direction compensation algorithm of a large wind turbine[J].Power System Protection and Control,2020,48(19):98-112[点击复制] |
|
摘要: |
为提高风电设备的风能转化率,实现在不增加硬件成本条件下提高发电量,研究了风向优化补偿算法。首先在研究尾流影响风向测量误差的过程中,明确了偏航误差的层流成分和湍流成分,建立了切向诱导因子补偿算法补偿层流成分误差,同时引入了卡尔曼滤波算法补偿湍流成分误差。然后建立了算法效果验证方式和验证指标。最后依托项目组实验条件进行了算法验证。结果表明,风向补偿算法在不增加硬件设备的情况下,可提高风机对风准确率30.36%,提高最优发电工况发电量2.82%。 |
关键词: 尾流效应 卡尔曼滤波 补偿算法 偏航误差 激光雷达 风力发电机 |
DOI:DOI:10.19783/j.cnki.pspc.191439 |
投稿时间:2019-11-18修订日期:2020-03-31 |
基金项目:国家重点研发计划项目资助(2018YFB0904000) |
|
Research on a wind direction compensation algorithm of a large wind turbine |
ZHANG Lujiang,TANG Huizeng,ZHANG Li,CUI Mengyang,LU Xiaoguang |
(1. State Grid Henan Comprehensive Energy Service Co., Ltd., Zhengzhou 450052, China;
2. State Grid Henan Electric Power Corporation Maintenance Company, Zhengzhou 450007, China;
3. XJ-Wind Power Technology Company, Xuchang 461000, China;1. State Grid Henan Comprehensive Energy Service Co., Ltd., Zhengzhou 450052, China;
2. State Grid Henan Electric Power Corporation Maintenance Company, Zhengzhou 450007, China;
3. XJ-Wind Power Technology Company, Xuchang 461001, China;1. State Grid Henan Comprehensive Energy Service Co., Ltd., Zhengzhou 450052, China;
2. State Grid Henan Electric Power Corporation Maintenance Company, Zhengzhou 450007, China;
3. XJ-Wind Power Technology Company, Xuchang 461002, China;1. State Grid Henan Comprehensive Energy Service Co., Ltd., Zhengzhou 450052, China;
2. State Grid Henan Electric Power Corporation Maintenance Company, Zhengzhou 450007, China;
3. XJ-Wind Power Technology Company, Xuchang 461003, China;1. State Grid Henan Comprehensive Energy Service Co., Ltd., Zhengzhou 450052, China;
2. State Grid Henan Electric Power Corporation Maintenance Company, Zhengzhou 450007, China;
3. XJ-Wind Power Technology Company, Xuchang 461004, China) |
Abstract: |
A study of a wind direction optimization compensation algorithm is carried out to improve power generation by enhancing the wind energy conversion rate of wind power equipment without increasing the hardware cost. First, the laminar flow component and turbulence component of yaw error are defined while studying the influence of wake flow on wind direction measurement error. A tangential induction factor compensation algorithm is established to compensate for the laminar flow component error, and the Kalman filter algorithm is introduced to compensate for the turbulence component error at the same time. After that, a method and an index value are established to verify the accuracy of the algorithm. Finally, the algorithm is tested and verified based on the experimental conditions of the project team. The test results show that the wind direction compensation algorithm could improve the accuracy of the turbine against the wind by 30.36% and the generating capacity of the optimal power generation condition by 2.82% without increasing hardware.
This work is supported by National Key Research and Development Program of China (No. 2018YFB0904000). |
Key words: wake effect Kalman filtering compensation algorithm yaw error laser radar wind turbine |