引用本文: | 黄 博,胡 博,谢开贵,等.计及交通事故影响的电动汽车路径规划和充电导航策略[J].电力系统保护与控制,2024,52(19):47-59.[点击复制] |
HUANG Bo,HU Bo,XIE Kaigui,et al.Electric vehicle path planning and charging navigation strategies considering the impact of traffic accidents[J].Power System Protection and Control,2024,52(19):47-59[点击复制] |
|
摘要: |
针对交通事故对电动汽车用户驾驶和充电体验的影响尚未得到充分研究这一现状,提出了一种弱化交通事故对用户不良影响的路径规划和充电导航策略。首先,以电动汽车用户重点关注的行驶能耗和行驶时间两项指标为导向,建立了基于实时交通信息的交通网综合道路阻抗模型,实现了交通流拥塞水平的动态表征。然后,考虑交通流量和道路拓扑的耦合作用,建立了基于交通事故“发生-持续-消散”动态过程的后果评估模型,实现了交通事故后果的精准量化。最后,建立了以提升电动汽车用户体验为目标的路径规划和充电导航优化模型,提出了基于Dijkstra算法的滚动优化算法,实现了模型的快速求解。以配电网与交通网组成的耦合系统进行算例分析,结果表明,所提方法能够有效减少交通事故发生后的电动汽车用户综合出行成本,并缓解交通网拥塞。 |
关键词: 交通事故 电动汽车 实时交通 路径规划 充电导航 |
DOI:10.19783/j.cnki.pspc.240089 |
投稿时间:2024-01-09修订日期:2024-04-09 |
基金项目:国家自然科学基金项目资助(52107072);国家电网有限公司科技项目资助(5400-202399569A-3-2-ZN);中央高校基本科研业务费(2023CDJYXTD-004) |
|
Electric vehicle path planning and charging navigation strategies considering the impact of traffic accidents |
HUANG Bo,HU Bo,XIE Kaigui,SHAO Changzheng,LIN Chengrong,HUANG Wei |
(National Key Laboratory of Power Transmission Equipment Technology (Chongqing University), Chongqing 400044, China) |
Abstract: |
The current state of research reveals a lack of comprehensive exploration of the impact of sporadic traffic accidents on the driving and charging experience of electric vehicle users. Thus a path planning and charging navigation strategy is proposed to mitigate the adverse effects of traffic accidents on users. First, guided by the two key metrics of energy consumption and travel time, which are of paramount importance to electric vehicle users, this paper establishes a comprehensive road impedance model for the transportation network based on real-time traffic information, thereby achieving a dynamic representation of traffic congestion levels. Then, considering the interplay between traffic flow and road topology, this paper formulates a consequence assessment model based on the dynamic process of traffic accidents. This encompasses the phases of “occurrence-sustenance-dispersion” for precise quantification of traffic accident consequences. Lastly, an optimization model for path planning and charging navigation, targeting the enhancement of the EV user experience, is established. To expedite the solution, a rolling optimization algorithm based on the Dijkstra algorithm is proposed. Case studies are carried out on a coupled system of power distribution and traffic networks. Results demonstrate that the proposed method can effectively reduce the overall costs of electric vehicle users and alleviate traffic congestion. |
Key words: traffic accidents electric vehicles real time transportation charging navigation route planning |