引用本文: | 蒋 冲,范必双,徐向前,等.计及传热效应的配电网弧光接地故障模型及混合消弧方法研究[J].电力系统保护与控制,2025,53(15):1-12.[点击复制] |
JIANG Chong,FAN Bishuang,XU Xiangqian,et al.Research on arc grounding fault model considering heat transfer effects and hybrid arc suppression method for distribution networks[J].Power System Protection and Control,2025,53(15):1-12[点击复制] |
|
本文已被:浏览 442次 下载 63次 |
 码上扫一扫! |
计及传热效应的配电网弧光接地故障模型及混合消弧方法研究 |
蒋冲1,2,范必双1,2,徐向前1,2,黄芸红1,2,王文1,2,喻锟1,2 |
|
(1.长沙理工大学电气与信息工程学院,湖南 长沙 410114;2.长沙理工大学电网
防灾减灾全国重点实验室,湖南 长沙 410114) |
|
摘要: |
配电网弧光接地故障(arc grounding faults, AGF)易引发保护拒动与次生灾害。现有模型因忽略接地介质击穿与电弧传热效应,难以准确表征弧光高阻接地故障(arc high-resistance grounding faults, AHGF)的动态特性,且传统消弧方法存在高阻工况适应性差的缺陷。为此,首先提出一种计及传热效应的配电网AGF故障模型及混合消弧方法,建立融合介质击穿特性与电阻率温变模型的接地电阻模型。然后,构建变尺寸Mayr-Cassie电弧传热耦合模型,设计无源消弧与有源消弧串联的混合消弧拓扑,降低有源消弧的有功功率占比。最后,基于MATLAB/Simulink仿真与白桦、红土、混凝土3类典型接地介质的真型配电网AGF故障实验结果表明:所提AGF模型能准确有效表征故障特性,其全周期电流波形相关系数达0.8734~0.9173。所提混合消弧方法能对各AHGF故障进行有效、可靠消弧。 |
关键词: 配电网 弧光接地故障 介质击穿 传热效应 混合消弧 |
DOI:10.19783/j.cnki.pspc.241399 |
投稿时间:2024-10-21修订日期:2025-02-21 |
基金项目:国家自然科学基金项目资助(52277077) |
|
Research on arc grounding fault model considering heat transfer effects and hybrid arc suppression method for distribution networks |
JIANG Chong1,2,FAN Bishuang1,2,XU Xiangqian1,2,HUANG Yunhong1,2,WANG Wen1,2,YU Kun1,2 |
(1. College of Electrical and Information Engineering, Changsha University of Science and Technology,
Changsha 410114, China; 2. State Key Laboratory of Disaster Prevention & Reduction for Power Grid,
Changsha University of Science & Technology, Changsha 410114, China) |
Abstract: |
Arc grounding faults (AGF) in distribution networks can trigger protection maloperation and secondary hazards. Existing fault models often fail to accurately represent the dynamic characteristics of arc high-resistance grounding faults (AHGF) due to neglected dielectric breakdown and arc heat transfer effects. Additionally, conventional arc suppression methods exhibit poor adaptability under high-resistance conditions. To address these issues, this paper proposes an AGF model incorporating heat transfer effects and a hybrid arc suppression method. A grounding resistance model is established that integrates dielectric breakdown characteristics with temperature-dependent resistivity. A variable- dimension Mayr-Cassie arc model with thermal coupling is developed. A series-connected hybrid topology combining passive and active arc suppression is designed to reduce active suppression’s active power consumption. Finally, experimental and simulation results based on MATLAB/Simulink and real distribution network AGF tests with three typical grounding media (birch, red soil, and concrete) demonstrate that, the proposed AGF model can accurately represent fault characteristics, achieving full-cycle current waveform correlation coefficient of 0.8734~0.9173. The proposed hybrid arc suppression method can effectively and reliably suppress various AHGF faults. |
Key words: distribution network arc grounding faults dielectric breakdown heat transfer effect hybrid arc suppression |