引用本文: | 易绍雯,闫孟婷,朱燕梅,等.考虑平稳输送的跨断面异质能源互补优化调度研究[J].电力系统保护与控制,2025,53(18):1-11.[点击复制] |
YI Shaowen,YAN Mengting,ZHU Yanmei,et al.Study on optimal scheduling of cross-section heterogeneous energy complementary optimization considering stable transmission[J].Power System Protection and Control,2025,53(18):1-11[点击复制] |
|
本文已被:浏览 812次 下载 95次 |
 码上扫一扫! |
考虑平稳输送的跨断面异质能源互补优化调度研究 |
易绍雯1,2,闫孟婷1,2,朱燕梅1,2,黄炜斌1,2,马光文1,2,王靖3 |
|
(1.四川大学水利水电学院,四川 成都 610065;2.四川大学山区河流保护与治理全国重点实验室,
四川 成都 610065;3.国家电网有限公司西南分部调度控制中心,四川 成都 610041) |
|
摘要: |
在新型电力系统背景下,输电网架结构的复杂化为清洁能源跨断面打捆外送带来了新挑战。为此,提出一种考虑系统跨断面输电平稳性的异质能源互补调度方法。首先,构建了以发电量最大、各断面输电波动性最小和弃电量最小为目标的中长期优化调度模型,并采用NSGA-II算法求解。然后,针对传统NSGA-II算法在求解梯级水电主导的调度模型时对运行越限情况调整能力较弱的问题,引入差异化探索矩阵优化变异算子,提升算法对约束边界的自适应调节能力。最后,以雅砻江清洁能源基地为算例,通过对比不同典型年计算结果验证了所构建的三目标模型在描述异质能源系统跨断面输电问题时具有较好的适用性,对比改进前后算法的错误率和帕累托解占比指标验证了改进后的NSGA-II算法具有更强的自适应能力。 |
关键词: 异质能源互补系统 跨断面输电 水风光一体化 多目标优化 改进NSGA-II算法 |
DOI:10.19783/j.cnki.pspc.241538 |
投稿时间:2024-11-19修订日期:2025-03-18 |
基金项目:国家重点研发计划项目资助(2018YFB0905204) |
|
Study on optimal scheduling of cross-section heterogeneous energy complementary optimization considering stable transmission |
YI Shaowen1,2,YAN Mengting1,2,ZHU Yanmei1,2,HUANG Weibin1,2,MA Guangwen1,2,WANG Jing3 |
(1. College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China; 2. State Key Laboratory of
Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; 3. Dispatching Control
Center of Southwest Branch, State Grid Corporation of China, Chengdu 610041, China) |
Abstract: |
In the context of new power systems, the increasing complexity of transmission grid structures poses new challenges for bundled delivery of clean energy sources across network sections. To address this issue, a heterogeneous energy complementary dispatching method is proposed that accounts for the smooth delivery across the transmission sections of the system. First, a mid- to long-term multi-objective optimal dispatch model is constructed with the objectives of maximizing power generation, minimizing transmission fluctuations across sections, and minimizing power curtailment. The model is solved by the NSGA-II algorithm. Then, to overcome the weak adjustment ability of the traditional NSGA-II algorithm in handling operational constraint violations when solving scheduling models dominated by cascade hydropower stations, a differentiated exploration matrix is introduced to optimize the mutation process, thereby enhancing the algorithm’s adaptive adjustment capability at constraint boundaries. Finally, taking the Yalong River clean energy base as an example, the applicability of the constructed three-objective model in describing the cross-section transmission problem of heterogeneous energy systems is verified by comparing the computational results across different typical years. Furthermore, the stronger adaptive ability of the improved NSGA-II algorithm is demonstrated by comparing the error rate and percentage of Pareto solution metrics before and after the improvement. |
Key words: heterogeneous energy complementary system cross-section transmission hydro-wind-solar integration multi-objective optimization improved NSGA-II algorithm |