| 引用本文: | 马 成,李笑竹,王子祥,等.基于自适应功率跟踪控制的质子交换膜燃料电池调频策略研究[J].电力系统保护与控制,2025,53(20):58-68.[点击复制] |
| MA Cheng,LI Xiaozhu,WANG Zixiang,et al.Research on frequency regulation strategy of proton exchange membrane fuel cells based on adaptive power tracking control[J].Power System Protection and Control,2025,53(20):58-68[点击复制] |
|
| 摘要: |
| 针对质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)采用最大功率点跟踪控制或恒功率控制并网时无法有效支撑电网的问题,提出一种基于自适应功率跟踪控制的PEMFC调频控制策略。首先考虑频率与功率之间的关系,并计及PEMFC的自身特性,提出一种下垂系数自调节的有功频率下垂控制方法。其次基于扰动观测法的基本原理提出一种自适应功率跟踪控制算法,使得PEMFC具有动态调节输出功率从而支撑系统频率的能力。最后考虑PEMFC的最大功率点特性,对其运行点进行限制,避免其运行在浓差极化区从而造成大量能量浪费以及缩短PEMFC使用寿命。在MATLAB/Simulink仿真平台搭建模型,验证了所提控制策略的有效性,结果表明所提控制策略相比于固定下垂系数控制,其频率波峰值和波谷值分别减少0.02 Hz和0.03 Hz。 |
| 关键词: 质子交换膜燃料电池 最大功率点特性 参数自调节 下垂控制 自适应功率跟踪 一次调频 |
| DOI:10.19783/j.cnki.pspc.241596 |
| 投稿时间:2024-12-01修订日期:2025-03-04 |
| 基金项目:国家自然科学基金青年项目资助(52307108);北京市自然科学基金-海淀原始创新联合基金项目资助(L242008) |
|
| Research on frequency regulation strategy of proton exchange membrane fuel cells based on adaptive power tracking control |
| MA Cheng1,2,LI Xiaozhu1,WANG Zixiang1,JIANG Libo2,ZHENG Tianwen3 |
| (1. Engineering Research Center of Renewable Energy Power Generation and Grid-connected Control, Ministry of Education,
Xinjiang University, Urumqi 830047, China; 2. Sichuan Energy Internet Research Institute, Tsinghua University,
Chengdu 610218, China; 3. Anhui USEM Technology Co., Ltd., Wuhu 241100, China) |
| Abstract: |
| To address the issue of insufficient grid support when proton exchange membrane fuel cells (PEMFC) are integrated with the grid using maximum power point tracking (MPPT) or constant power control, this paper proposes a frequency regulation strategy based on adaptive power tracking control for PEMFC. First, considering the relationship between frequency and power as well as the inherent characteristics of PEMFC, a droop-based active power-frequency control method with self-adjusting droop coefficient is proposed. Second, an adaptive power tracking control algorithm is developed based on the principle of disturbance observer, enabling PEMFC to dynamically regulate its output power to support system frequency. Finally, considering the maximum power point characteristic of the PEMFC, its operating point is constrained to avoid operation in the concentration polarization region—this would otherwise lead to significant energy waste and shorten the service life of the PEMFC. A model is built on the MATLAB/Simulink simulation platform to verify the effectiveness of the proposed control strategy. Results show that compared with the fixed droop coefficient control, the proposed control strategy reduces the system’s frequency peak value by 0.02 Hz and frequency valley value by 0.03 Hz, respectively. |
| Key words: PEMFC maximum power point characteristic parameter self-adjustment droop control adaptive power tracking primary frequency regulation |