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A Novel Supercapacitor Degradation Prediction 

Using a 1D Convolutional Neural Network and 

Improved Informer Model 
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Abstract—Safety and reliability are crucial for the 

next-generation supercapacitors used in energy storage 

systems, while accurate prediction of the degradation 

trajectory and remaining useful life (RUL) is essential for 

analyzing degradation and evaluating performance in 

energy storage systems. This study proposes a novel data 

processing and improved one-dimensional convolutional 

neural network (1D CNN)-informer framework for ro-

bust RUL prediction. In data preprocessing, all data from 

two structures are adjusted to a unified format, and 

cross-entropy loss is used to couple the 1D CNN and in-

former. Then, the minimum-maximum feature scaling 

method is used for normalization to accelerate the train-

ing process in reaching the minimum cost function. A 

relative position encoding algorithm is introduced to im-

prove the Informer model, enabling it to better learn the 

sequence relationships between data and effectively re-

duce prediction variability. Supercapacitor data in dif-

ferent working conditions are used to validate the pro-

posed method. Compared with other existing methods, the 

maximum root mean square error is reduced by 32.71%, 

the mean absolute error is reduced by 28.50%, and R2 is 

increased by 4.79%. The strategy considers the comple-

mentarity between two single models, which can extract 

features and enrich local details, as well as enhance the 

model’s global perception ability. The experimental re-

sults demonstrate that the proposed model achieves 

high-precision and robust RUL prediction, thereby pro-

moting the industrial application of supercapacitors. 

Index Terms—Supercapacitors, remaining useful life, 
convolution neural network, transformer, informer. 

 

 
_____________________________________ 

Received: September 22, 2023 

Accepted: December 10, 2023 

Published Online: July 1, 2024 

Hao Zhang and Le Kang are with the College of Materials Sci-

ence and Engineering, Xi’an University of Science and Technol-

ogy, Xi’an 710054, China (e-mail: hao0204@xauat.edu.cn; kan-

gle20140805@126.com).  

Zhenxiao Yi and Kai Wang (corresponding author) are with the 

School of Electrical Engineering, Qingdao University, Qingdao 

266071, China (e-mail: yzx@qdu.edu.cn; wkwj888@163.com).  

Yi Zhang is with the School of Energy Sciences and Engi-

neering, Nanjing Tech University, Nanjing 211816, China 

(e-mail: zhangy@njtech.edu.cn). 

DOI: 10.23919/PCMP.2023.000167 

Ⅰ.   INTRODUCTION 

upercapacitors are efficient, practical, and envi-
ronmentally friendly energy storage devices, and 
have been widely applied. Compared to traditional 

batteries, supercapacitors offer advantages such as high 
power density, fast response times, wide temperature 

ranges, and long lifetimes [1][3]. Currently, superca-
pacitors are extensively used in high-power pulse ap-
plications such as electromagnetic launchers, laser 

weapons, and wind power frequency regulation [4][6]. 
They are also employed in grid frequency regulation, 
rail transportation, buses, and port energy recovery 

systems [7][10]. In hybrid energy storage systems, the 
integration of supercapacitors can increase the voltage 
and current of the overall energy storage system, im-

proving its energy utilization efficiency [11][13].  

Because of varying structural parameters and oper-

ating conditions, supercapacitors can exhibit significant 

differences in their remaining useful life (RUL), which 

refers to the remaining charge-discharge cycles from the 

current time until the end of life (EOL). This can impact 

the reliability, safety, and aging process of the entire 

energy storage system [14], [15]. The capacity loss of 

supercapacitors is widely accepted as a degradation 

indicator for RUL estimation, reflecting the state of 

health (SOH) of the supercapacitors, which is crucial for 

device durability [16][20]. Typically, when the ca-

pacity of a supercapacitor decreases below a certain 

threshold, known as the EOL, it can no longer meet the 

requirements and needs to be replaced promptly 

[21][25]. Therefore, accurately predicting the RUL of 

supercapacitors has significant implications for design, 

management, and maintenance. However, most existing 

research focuses on batteries [26][33], with limited 

studies on supercapacitors. Because of substantial dif-

ferences in the internal structures and principles be-

tween batteries and supercapacitors, the existing 

methods cannot be readily applied to supercapacitors, 
necessitating the development of new approaches to 

address these issues. 

The current methods for predicting the RUL of su-

percapacitors primarily include end-to-end and trajec-
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tory prediction methods [34]. End-to-end prediction 

directly maps relevant features to the lifespan of the 

supercapacitor to predict its RUL. For example, refer-

ence [35] maps the collected aging conditions, as well 

as capacitance and resistance thresholds, to RUL. The 

particle filter (PF) algorithm is then used to achieve 

accurate prediction of supercapacitor RUL with high 

precision. A capacity degradation model is established 

by capturing in-situ parameters corresponding to the 

RUL, while multi-scale extended Kalman filters and 

Gauss-Hermite particle filters are used to update the 

in-situ parameters, ultimately achieving the prediction 

of RUL [36]. Reference [37] extracts several features 

related to RUL from data such as current, voltage, and 

temperature obtained from cycling experiments, while 

regularized regression is used to establish the relation-

ship between these features and RUL, achieving pre-

diction errors below 10%. Additionally, methods based 

on deep learning for predicting the RUL of superca-

pacitors can establish high-dimensional mappings 

without the need for manual feature extraction. For 

example, a convolutional neural network (CNN) can 

directly learn the relationship between historical data 

and RUL. Reference [38] proposes an end-to-end RUL 

prediction method based on a CNN. It establishes the 

mapping between charge-discharge data and corre-

sponding RUL, and can directly learn aging features 

from raw data with high prediction accuracy. However, 

end-to-end prediction methods only provide scalar RUL 

values and lack a comprehensive characterization of the 

capacity degradation trajectory of supercapacitors.  

The trajectory prediction method involves extrapolat-

ing the capacity trajectory to EOL to determine the RUL 

of supercapacitors. The degradation trajectory of capac-

ity can be seen as a time series. Recurrent neural net-

works (RNNs), because of their structure with hidden 

neurons that facilitate recurrent connections and their 

ability to extract and update temporal data correlations, 

have been considered an effective means of handling time 

series data. However, simple RNNs suffer from issues 

such as vanishing or exploding gradients, which limit 

their practicality in terms of time dependency. To address 

this problem, long short-term memory (LSTM) neural 

networks introduce additional interactions to each mod-

ule (or unit), thus removing this limitation. For instance, 

reference [39] predicts the capacity degradation trajec-

tory of supercapacitors using LSTM neural networks, 

demonstrating high prediction accuracy and robustness. 

Reference [40] proposes to combine fully connected 

layers (FCL) with LSTM to estimate the SOH, resulting 

in accurate and efficient estimates. Many researchers 

have achieved better results by combining LSTM net-

works with other methods, leveraging the advantages of 

multiple algorithmic blends to improve estimation ac-

curacy [41]. Reference [42] proposes an improved ro-

bust multi-timescale singular filtering-Gaussian process 

regression-long short-term memory (SF-GPR-LSTM) 

modeling method for residual capacity estimation. An 

optimized multi-task training strategy is constructed to 

achieve a fine mathematical dynamic representation of 

the physical carrier transport mapping relationship. The 

proposed model effectively achieves carrier transport 

collaborative optimization and is of great significance 

for estimating the remaining capacity of batteries over 

the entire life cycle at extremely low temperatures. 

Reference [34] proposes a method combining the Har-

ris’s hawks optimization (HHO) algorithm and a long 

short-term memory (LSTM) neural network to predict 

the RUL of supercapacitors. This approach achieves 

higher prediction accuracy than traditional LSTM mod-

els. The method also enhances system stability and reli-

ability. Reference [43] proposes an improved anti-noise 

adaptive long short-term memory (ANA-LSTM) neural 

network with high robustness feature extraction and op-

timal parameter representation for accurate RUL predic-

tion based on an improved dual closed-loop observation 

modeling strategy. The strategy considers changing cur-

rent rates, environmental temperature, and other influ-

encing parameters, while the established multi-feature 

collaborative model realizes multi-scale parameter op-

timization and robust RUL prediction. This predictive 

method not only provides a scalar RUL but also has the 

advantage of predicting future trajectories since capacity 

trajectories contain more practical and useful information. 

Therefore, it offers more comprehensive support for the 

overall management of supercapacitors. However, this 

approach requires a large amount of historical data from 

supercapacitors for training. 

One-dimensional convolutional neural network (1D 

CNN) is capable of automatically extracting features 

based on the characteristics of sequential data, and 

therefore it can capture more details without the need 

for manual feature engineering, making it a current 

research hotspot. However, when dealing with long 

sequential data, 1D CNN may overlook the dependen-

cies between sequence information. Therefore, it is 

generally used in conjunction with other neural net-

works to predict the RUL. Reference [44] uses a hybrid 

model combining CNN and LSTM to predict the RUL 

of batteries, achieving a high prediction accuracy. In 

[45], a variant attention-based spatiotemporal LSTM 

(AST-LSTM) neural network is proposed to determine 

both new and old data simultaneously while actively 

tracking the state of the battery through fixed connec-

tions. Experimental results demonstrate that this method 

predicts well. In addition, a CNN-ASTLSTM model, 

incorporating a convolutional neural network, is pro-

posed. This model automatically extracts hierarchical 

features during battery degradation, thus avoiding the 

need for manual intervention and minimizing its impact 

on prediction accuracy [46]. 

However, the previously mentioned methods suffer 
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from limited scalability in modeling long sequences and 

time-consuming training. When it comes to very long 

sequential data like supercapacitors, learning long-term 

dependencies becomes challenging. This is because the 

increased length of paths that forward and backward 

signals must traverse affect the model’s ability to learn 

long dependencies, resulting in reduced efficiency in 

capturing distant dependencies. 

Therefore, an attention mechanism has been pro-

posed to address the limitations of modeling long se-

quences. The main idea is to change the focus on in-

formation, allowing the model to pay more attention to 

crucial details. This enhances the model’s performance 

and generalization capabilities [47]. However, because 

of the sequential nature of the processing, where each 

element needs to be processed one by one and the pro-

cessing of the tth step can only start after the completion 

of the (t -1)th step, it is time-consuming with inefficient 

computation when dealing with large datasets [48]. 

To address the issues, the transformer model elimi-

nates the sequential dependencies present in RNNs by 

introducing an attention mechanism [49]. The core 

component is self-attention, which enables the model to 

capture global dependencies between input and output 

using an encoder-decoder architecture. Additionally, it 

achieves high efficiency and accuracy through highly 

parallelizable computations. The output at each position 

can simultaneously consider information from all posi-

tions in the input, enabling better capturing of 

long-range dependencies in the input sequence and the 

relationships between different features appearing at 

different positions. It can also learn varying degrees of 

attention at different positions, allowing for more flex-

ible and precise modeling [50][53]. However, the 

transformer model has limitations such as high time 

complexity, large memory usage, and sudden drops in 

prediction accuracy, making it unsuitable for direct 

application in time series forecasting. To address these 

challenges, a modified variant called informer is pro-

posed in [54] based on the transformer architecture. 

Informer has been tested on four large-scale datasets 

and has shown excellent performance, providing an 

alternative solution for time series forecasting problems. 

However, although Informer is an improved and novel 

forecasting model, there still exist problems where local 

feature details can be easily overlooked, leading to a 

reduction in discernibility within a limited number of 

timestamps [55]. 

In this study, an innovative 1D CNN-informer neural 

network structure is proposed. By combining local 

features based on 1D CNN with global variables based 

on informer, the degradation trajectories and RUL of 
supercapacitors in different operating conditions can be 

accurately predicted. The main contributions of this 

research are: 

1) 1D CNN possesses powerful feature extraction 

capabilities, excelling in collecting local variables 

through convolutional operations and preserving all 

local cues as feature maps, while Informer integrates 

global properties among compressed enhanced embed-

dings using its unique attention mechanism. Therefore 

the proposed 1D CNN-informer model retains the 

structures and generalization advantages of both 1D 

CNN and Informer, enabling high-precision and rapid 

prediction of supercapacitor degradation trajectories 

and RUL. The experimental results demonstrate the 

enormous potential of this approach. 

2) Improvements have been made to the transformer 

model to obtain the informer model. Also, a relative 

position encoding method is introduced to optimize the 

Informer model. 

3) All data from the 1D CNN and informer structures 

have been adjusted to a unified format, and 

cross-entropy loss is used to couple the style variables 

between them. 

4) The proposed hybrid model effectively leverages 

information from the observed data. This is then applied 

to supercapacitors in different operating conditions. It 

addresses the limited positional information-capturing 

ability of a single informer network. This method ex-

hibits strong generalizability and has reference value for 

estimating the SOH of lithium-ion batteries. 

The remaining sections of this paper are organized as 

follows. Section Ⅱ introduces the basic principles and 

overall prediction framework of 1D CNN, transformer, 

informer, and 1D CNN-informer. In Section Ⅲ, the aging 

test platform, factors influencing the aging of superca-

pacitors, and the dataset of supercapacitors collected in 

different operating conditions for testing are presented. In 

Section Ⅳ, the proposed 1D CNN-Informer and three 

other mainstream methods are trained and analyzed 

based on online testing. Section Ⅴ concludes the study 

and provides prospects for future research. 

Ⅱ.   METHODOLOGY 

This section introduces the working principles and 

usage methods of each component in the proposed hy-

brid model, including the 1D CNN and the improved 

informer network. 

A. 1D Convolutional Neural Network 

A CNN has outstanding capability in handling mul-

tidimensional data and has gained extensive attention in 

fields such as image recognition, natural language 

processing, and time series classification. A CNN con-

sists of an input layer, an output layer, and hidden layers, 

providing powerful feature extraction and non-linear 

relationship modeling abilities. 1D CNN mainly in-
cludes convolutional layers, pooling layers, and FCL, 

with the convolutional layer being the core component. 

The structural diagram of a 1D CNN is shown in Fig. 1. 

The convolutional layer captures local attributes from 
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higher-level inputs and passes all information to lower 

levels to obtain more complex features. The pooling 

layer reduces dimensionality while preserving relevant 

features, and the fully connected layer yields the pre-

diction results. The activation function used is the rec-

tified linear unit (ReLU), which mitigates the vanishing 

gradient problem and improves the trainability of the 

network. The key factors contributing to the success of a 

1D CNN include local connections, weight sharing, 

pooling, and the use of multiple layers. This article uses 

1D CNN to capture the spatial characteristics of su-

percapacitor variables. Add convolutional layers so that 

the input information undergoes convolutional opera-

tions and activation functions before flowing to the next 

layer kh : 

cnn cnn cnn( )k kh W x b                          (1) 

where cnn  represents the sigmoid activation function; 

  denotes the discrete convolution between the input 

signal kx  and the filter weight cnnW ; and cnnb  is a bias 

parameter which shall be learned during training. 
Finally, all neurons in each layer are connected to 

every neuron in the output layer through the fully con-
nected layer [56], [57]. 

 

Fig. 1.  Internal structure and feature extraction schematic dia-

gram of a 1D CNN. 

B. Transformer 

The transformer model was proposed by Vaswani et al. 

in 2017 [58]. Its core idea is to model the dependency 

relationships between input sequences based entirely on a 

self-attention mechanism. It can solve the problem of 

parallel computation in traditional RNN when dealing 

with sequential data, enabling the model to process the 

entire input sequence simultaneously and greatly im-

proving computational efficiency. The transformer 

model is an overall architecture that includes stacked 

self-attention and fully connected layers for both the 

encoder and decoder. Additionally, it relies on a 

self-attention mechanism composed of scaled 

dot-product and multi-head attention. This fundamentally 

changes the implementation of attention mechanisms. 

The main components of the Transformer model in-

clude a self-attention mechanism, encoder-decoder 

structure, a multi-head attention mechanism, and a 

feed-forward neural network. 

In the encoder, the input sequence 1 2( , , , )nX x x x  

is mapped to a given continuous representation se-

quence 1 2( , , , )nZ z z z . The previously generated 

symbols are used as additional inputs, and the output 

sequence 1 2( , , , )nY y y y  is generated one element 

at a time in the decoder. The structure of the transformer 
model is shown in Fig. 2. 

 

Fig. 2.  Diagram illustrating the structure of the transformer model. 

The encoder consists of a stack of n identical layers, 

while each layer includes a multi-head self-attention 

mechanism and a fully connected feed-forward network. 

The decoder also comprises a stack of identical layers, 

with an additional sub-layer that performs output 

through a multi-head attention mechanism. Both the 

encoder and decoder layers use residual connections 

followed by layer normalization. The masking in the 

self-attention mechanism prevents early exposure to 

future information during the decoding process. The 

calculation of the continuous representation sequence is 

defined by the standard self-attention mechanism as: 
T

Attention( , , ) softmax( )Z
d

 
QK

Q K V V       (2) 

where Q, K, V are the query matrix, the key matrix, and 

the value matrix, respectively; d is the dimension size 

of K. 
The Transformer model addresses the limitations of 

traditional RNN, such as poor parallel computing capa-

bility and weak modeling of long-term dependency rela-

tionships. It also has the advantage of capturing global 

information. However, there are challenges including 

high computational complexity, and significant time and 

resource requirements for training and prediction. Addi-

tionally, the position information of input sequences is 
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encoded using positional encoding, which may not ac-

curately represent the position information for long se-

quences. 

C. Informer 

The informer model proposed in [59] is an optimized 

version of the transformer model, demonstrating supe-

rior performance in sequence prediction tasks. Similar 

to the transformer model, the informer model consists of 

two main components: the encoder and the decoder. To 

address the limitations of the transformer model, the 

informer model introduces improvements in following 

three ways. 

1) ProbSparse Self-attention 

ProbSparse self-attention is proposed. This can select 

the most important queries, significantly reducing the 

computational and spatial complexity. 

The formula for ProbSparse self-attention can be de-

rived as: 
T

( , , ) Softmax( )A
d


QK

Q K V V                  (3) 

where Q  is a sparse matrix of the same size of Q . 

This enables ProbSparse self-attention to compute 

dot products only for each query-key pair. This ap-

proach effectively solves the quadratic computational 

complexity issue of the self-attention mechanism in 

Transformers. For the detailed derivation of the for-

mulas, please refer to [54]. 

2) A Self-attention Distillation Operation 
A self-attention distillation operation is introduced, 

using convolution and pooling operations to reduce 

dimensionality and network parameters, thus greatly 

reducing the overall spatial complexity. This overcomes 

the barrier of being unable to stack inputs that are too 

long. The distillation process from the jth layer to the 

(j+1)th layer is as follows:  

1 ABMaxPool(ELU(Cov1d([ ] )))t t

j jX X          (4) 

where  
AB

  represents the attention block, it contains 

the multi-head ProbSparse self-attention and the essen-
tial operations; Conv1d( )  performs an 1D convolu-

tional filters (the kernel width  3) on time dimension 

with the ELU( )  activation function; and 1

t

jX   repre-

sents down sampling. 
This includes multi-head probsparse self-attention 

along with the key operations in the attention block. 

This will address the issue of high memory usage in the 

Transformer model. 

3) A Generation Style Decoder 

A generation style decoder is proposed. This obtains 

all prediction results in one step instead of the traditional 

step-by-step approach. This improves the speed of long 

sequence prediction, as only a single forward step is 

needed to generate the entire output sequence. It also 

avoids error propagation during the prediction phase. The 

input to the decoder is represented as: 
token model( )

de token OConcat( , ) yL L dt t tX X X
 

          (5) 

where token model

token

L dtX


  is the start token; and 

model

O
yL dtX


  is a placeholder for the target sequence 

that sets the scalar as 0; tokenL  is the length of the input; 

yL  is the length of the output sequence; and modeld  is the 

dimension of the model input. Masked multi-head at-
tention is applied in the ProbSparse self-attention 
computing by setting masked dot products to  . It 
prevents each position from attending to coming posi-
tions, which avoids auto-regressive. 

Thus, the efficiency problem of predicting long-term 

output, which exists in transformer, is solved by calcu-

lating the output by multiple outputs together. 

D. Relative Position Encoding Method 

The transformer’s position coding formula is given 

as: 

model2 /
PE( ,2 ) sin

10000
i d

p
p i

 
  

 
                (6) 

model2 /
PE( ,2 1) cos

10000
i d

p
p i

 
   

 
            (7) 

where p is the position of the input data and i is the 

dimension of the data. The calculation of the attention 

scores for query, key, and value are:  

 

( ( ))

( ( ))

( ( ))

i

j

j

i q x i

j k x j

j v x j

q W P

k W P

v W P

  


 
  


E

E

E

                    (8) 

where qW , kW , and vW  are the query, key, and value 

parameters added to each head of the multi-head atten-

tion, respectively; 
ixE and 

jxE are the respective data 

embedding vectors for ix  and jx ; while iP  and jP  are 

the position embeddings for the ith and jth positions, 
respectively. 

The calculation formula of the attention score 
,i j

S of 

the ith element and jth element is: 

,

T T( ( ))( ( ))
i j i ji j q x i k x jS q W W   k E P E P     (9) 

Ensure that the output probability value 
,i j

a  is be-

tween 0 and 1:  

, ,

, ,

softmax( )i j i j

i j i j j

j

a S

A S v



 



                          (10) 

Factoring (9) yields:  

,

T T T T

T T T T

i j i j i

j

x q k x x q k j

i q k x i q k j

S W W

PW PW

  



E W E E W P

W E W P
            (11) 

It has been discovered experimentally that the rela-

tive positional information gets lost when an unknown 

linear transformation is applied. Therefore, to address 
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this issue, relative positional encoding is introduced. 

This allows the model to adapt to sequence lengths that 

have not been encountered before. Consequently, the 

transformation of (11) becomes:  

,

,

T T T T

, , -

T T T T

, -

i j i j i

k E j

x q k E x x q k R i j

x k R i j

S W W

u v

  



E W E E W R

W E W R
        (12) 

where 
T

jP  is replaced by 
T

-i jR  representing the relative 

position; i qPW  is replaced by trainable parameters 

du R  in the third term and dv R  in the fourth term, 
which means the attentive bias should remain unchanged, 
also, the attention bias should remain unchanged after the 

improvement; dR  represents a d-dimensional real num-

ber; finally, the two weight matrices 
T

,k EW  and 
T

,k RW  are 

separated to generate content-based and position-based 
key vectors, respectively. 

The structure of informer is shown in Fig. 3. 

 

Fig. 3.  Structural diagram of informer. 

E. Overview of 1D CNN-informer Structure 

Time series can be viewed as a set of observations 

that occur within specific time intervals. Additionally, 

each randomly observed variable has a unique distribu-

tion. Local properties and global representations are two 

complementary and crucial aspects. Currently, numer-

ous studies have extensively examined techniques for 

handling time series data. In each sample, local features 

are non-stationary and exhibit stochastic processes over 

time. On the other hand, global features encode 

time-invariant characteristics over long distances. 

Based on this, we propose a concurrent neural network 

model called 1D CNN-informer, in which different 

dimensions of CNNs are used to process different data 

for improved performance. As 1D CNN performs ex-

ceptionally well in handling one-dimensional time se-

ries data while experimental data from supercapacitors 

consist of one-dimensional time series, using 1D CNN 

to extract and learn relevant features from input data is a 

suitable choice. Through its convolutional operations, it 

collects local variables in a hierarchical manner while 

preserving all local clues as feature maps. Informer, on 

the other hand, aggregates global attributes from com-

pressed enhanced embeddings using its self-attention 

mechanism [60], [61]. Therefore, the proposed network 

framework fully exploits both local and global charac-

teristics. The overall architecture diagram and the al-

gorithm are shown in Fig. 4 and Table Ⅰ, respectively, 

while the numerical changes of each layer in the 1D 

CNN-informer model is shown in Table Ⅱ. 

TABLE I 

1D CNN-INFORMER ALGORITHM 

Algorithm1. 1D CNN-informer algorithm 

, , 1 , 1
ˆ CNN Informer( , , , | )ij ij t ij t ij t n ijy x x x y  

      

where ˆ
ijy is the predicted capacity of the jth supercapacitor in ith 

cycle; 
,ij tx is the real value at sampling time t and its length is m; n is 

the length of the sliding window. 

Input: 

1 , 1, , 1 1, , 1 1

2 , 2, , 1 2, , 1 2

, , , 1 , , 1 2

j t j t j t n j

j t j t j t n j

mj t m j t m j t n j

X X X y

X X X y

X X X y

  

  

  

 
 
 
 
 
  

X   

Output: Capacity (F) 

Step 1: Set filters number and filter size 

Step 2: function TRAIN (Y) 

Step 3:  for number of training iterations do 

Step 4: model  send Y to proposed LSTM, CNN-transformer, 

CNN-informer for training 

Step 5: calculate loss function 

Step 6:  end for 

Step 8:  return model 

Step 9: end function 

Step 10: split X into training (70%) and testing datasets (30%) 

Step 11: calculate average estimation loss value to determine various 
hyperparameters 

Step 12: save the best model by weight optimization method and 

optimizers is Adam  

Step 13: load the optimal weight of the best model 

Step 14: ŷ  model.predict (testing) 

Step 15: calculate RUL 

Step 16: evaluate and compare the estimation results by MAE,MAPE, 

RMSE, R2 

TABLE Ⅱ 

THE NUMERICAL CHANGES OF EACH LAYER IN THE 1D 

CNN-INFORMER MODEL 

Layer type  Activation layer  Output shape  

Input  (none, 640, 7) 

Conv1D ReLU (none, 640, 32) 

Max-pooling-1D  (none, 80, 32) 

Multi-Head Prob-Sparse 

Self-attention 
 (none, 80, 32) 

Add_1  (none, 80, 32) 

Conv1D  (none, 80, 32) 

Layer-normalization_1  (none, 80, 32) 

Dense_1  (none, 80, 32) 

Dropout_1 GELU (none, 80, 32) 

Add_2  (none, 80, 32) 

Conv1D  (none, 80, 32) 

Layer-normalization_2  (none, 80, 32) 

Flatten  (none, 2560) 

Dropout_2  (none, 2560) 

Dense_2  (none, 1) 

Dropout_2  (none, 1) 
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Given the unique complementarity between the 1D 

CNN and informer feature styles, in 1D CNN-informer, 

local features are gradually extracted from the 1D CNN 

to enrich local details and then the Informer enhances 

the model’s perception ability to the global level. Posi-

tion encoding is used to describe the position of data 

points in a sequence, and assigns a unique representa-

tion between 0 and 1 to each position. The encoder is 

used to generate encodings for the correlated parts of the 

input information, and the input of the last encoder layer 

is used as the input for the decoder. The decoder also 

receives the output from the previous time step of the 

decoder to generate the output sequence. 

In the CNN layer, ReLU is used as the activation func-

tion, and the output is operated by the max pooling layer 

with 32 filters, kernel size of 8, strides of 1, and a pooling 

window size of 8. In the informer, dropout is introduced, 

with a rate of 0.1, to prevent overfitting. The first added 

layer combines the output information of the max pooling 

layer and the attention layer, while the second added layer 

combines the dropped and normalized data from the past. 

Subsequently, the dimension is reduced through the flat-

tening layer. Nonlinear transformations in the dense layer 

extract correlations between previously extracted features 

using the Gaussian error linear unit (GELU) as the acti-

vation function, ultimately mapping them to the output. 

Finally, the Dropout_2 layer connects to the prediction 

results through a dense layer. 
 

 

Fig. 4. Overview of 1D CNN-informer structure. 

1D CNN enriches local details by progressively ex-

tracting local features, while Informer enhances the 

global perception ability of the model. Position encod-

ing is used to describe the position of data points in the 

sequence. Since the method of position encoding has a 

significant impact on the predictive ability of the In-

former, the introduction of a relative position encoding 

algorithm allows the model to better learn the sequence 

relationship between data, effectively reducing predic-

tion variations. The output of the last encoder layer 

serves as the input to the decoder in informer, and gen-

erates the output sequence by receiving the input from 

the encoder. To address the issue of inconsistent data 

capabilities and features between 1D CNN and informer, 
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the data formats in both structures are unified. Addi-

tionally, coupling 1D CNN and informer variables 

through cross-entropy loss enhances the global percep-

tion ability of local variables and the local details of 

global attributes. Finally, the results of the decoder 

block are processed and the final prediction is achieved 

by coordinating the flattening, dropout, and dense layers. 

The dropout layer effectively prevents overfitting by 

randomly ignoring a set of neurons, while the output of 

each neuron in the previous layer is passed to the neu-

rons in the dense layer. Therefore, the combination of 

CNN and informer networks allows the model to fully 

utilize a variety of feature information in the input data, 

leading to comprehensive representation and accurate 

prediction of the RUL of supercapacitors. 

Ⅲ.   AGING TEST OF SUPERCAPACITORS 

A. Aging Testing Hardware System 

The supercapacitor aging state testing system consists 

of three main components: the testing system, the host 

computer, and a high-low temperature chamber. Be-

cause of the impact of factors such as temperature, 

voltage, and frequency on supercapacitors, to ensure 

consistency in parameter measurements, the capaci-

tances of the supercapacitors are measured in the same 

environment.  

The testing system used is Chroma 17011, which has 

built-in multiple test modes. It can perform constant 

current to constant voltage (CC-CV), constant current 

(CC), and constant power (CP) charging and discharg-

ing tests for supercapacitors. It can also perform capac-

itance testing and DC resistance testing. Each test mode 

switches steps based on the set time, voltage, current, or 

power conditions. The collected data includes feedback 

test steps, status, voltage, current, capacitance, etc. 

There are multiple flexible sampling methods to choose 

from, based on time, voltage, current, or capacitance 

conditions. 

The CPU model of the host computer is Intel 

i7-11700, which is used for data storage and processing. 

The high-low temperature chamber is used to provide 

specific temperature environments for the aging state 

testing of supercapacitors. In this experiment, the 

TIGSTOR supercapacitor TIG-1W160P010R01 is se-

lected. The capacitance of the supercapacitor is 10 F, the 

rated voltage is 2.7 V, and the operating temperature 

range is -40 ℃ to 70 ℃. The supercapacitor is charged 

with a constant current of 3 A until the voltage reaches 

2.7 V and then continues to charge in constant voltage 

mode. Multiple charge-discharge tests are conducted at 

different temperatures and voltages, with the discharge 

depth controlled at 50%. The tests are conducted in the 

same environment, without considering the influence of 

vibration, and repeated for hundreds of thousands of 

cycles. The testing setup is shown in Fig. 5(a), and the 

cycling test conditions for the supercapacitor are illus-

trated in Table Ⅲ. 
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Fig. 5.  Aging test and characteristic analysis of supercapacitors. 

(a) Supercapacitor aging test system (supercapacitor charg-

ing/discharging with CC-CV charging protocol at different tem-

peratures and voltages). (b) Schematic diagram of the experi-

mental procedure. (c) Capacity degradation trajectory of super-

capacitor with increasing number of cycles at 25 °C, 50 °C, 65 °C, 

and 80 °C. (d) Capacity degradation trajectory of supercapacitor 

at 2.7 V, 2.9 V, 3.1 V, and 3.2 V capacitance degradation trend of 

supercapacitor with the increase of cycle number. 

TABLE Ⅲ 

CYCLIC TEST CONDITIONS OF SUPERCAPACITORS 

The number of the super-
capacitor 

Voltage (V) Temperature (℃) 

SCs1 3.2 25 

SCs2 3.2 50 

SCs3 3.2 65 

SCs4 2.7 65 

SCs5 3.2 80 

SCs6 2.7 80 

SCs7 2.9 50 

SCs8 3.1 25 

SCs9 3.1 50 

SCs10 3.1 65 

SCs11 2.9 80 

SCs12 3.1 80 

SCs13 

SCs14 

SCs15 

SCs16 

2.9 

2.9 

2.7 

2.7 

25 

65 

25 

50 

B. Analysis of Aging Characteristics 

In this experiment, the supercapacitor is cyclically 

charged and discharged in different working conditions 

using the CC-CV charging protocol, and the experi-

mental flow is shown in Fig. 5(b). The aging trend of the 

supercapacitor's capacitance in different working con-

ditions is analyzed, as shown in Figs. 5(c) and (d). The 

analysis reveals that the aging rate of supercapacitor is 

closely related to temperature and voltage, and accel-

erates with the increase of temperature, beccause the 

movement of ions in the electrolyte and the various 

reactions occurring on the electrode surface are affected 

by temperature. Too high a temperature also affects the 

normal operation of the supercapacitor. 

Although there are differences in supercapacitor ag-

ing in different operating conditions, it can be seen that 

the degradation trend of the supercapacitor's capaci-

tance is similar at different voltages and temperatures. 

In other words, the aging of the supercapacitor follows a 

similar pattern of change. Therefore, the method pro-

posed in this paper is applicable for predicting the RUL 

of supercapacitors in different operating conditions. 

Ⅳ.   RESULTS AND DISCUSSION 

In this section, the results of LSTM, 1D 

CNN-Transformer, and 1D CNN-informer models for 

predicting the RUL of supercapacitors are presented. 

The initial parameters of the 1D CNN network include 

filters of 32, a kernel size of 8, strides of 1, the activation 

function of “relu”, pool size of 8 in the MaxPooling1D 

layer, and dropout rate of 0.05. The initial learning rate 

is set to 0.0001, and the learning rate decay factor is set 

to 0.8. The training time is measured using the time.time 

function from the Python TIME LIBRARY. 

The offline data of the supercapacitor is divided into a 

training set (70%) and a test set (30%). To demonstrate 

the generalizability of the models, different datasets in 

various operating conditions are randomly selected for 

validation and error analysis. The performance of the 

models is evaluated using metrics such as root mean 

square error (RMSE), mean absolute percentage error 

(MAPE) in percentage, mean absolute error (MAE), and 

R-squared value 2( ).R  

A. The Evaluation Criteria 

RMSE is used to represent the deviation from the 

mean. The magnitude of the RMSE value represents the 

average difference between the predicted and true values, 

and the smaller the value, the more accurate and more 

stable the model. The value of RMSE MSE( )R  is calcu-

lated as: 

2

MSE

1

1
ˆ( )

N

n n

n

R y y
N 

                  (13) 

where ny  represents the true value and ˆ
ny  represents 

the predicted value. 

MAE can suppress the problem of errors canceling 

each other, and is the average of the absolute errors 

between the predicted and true values. It can better 

reflect the actual situation of the predicted value errors, 

and the smaller its value, the higher the model accuracy. 

The value of MAE AE( )M  is: 

AE

1

1
ˆ

N

n n

n

M y y
N 

                      (14) 

The 2R  coefficient of determination is a visual rep-
resentation of the correlation between the model and the 
true value, and the higher the value, the more accurate 

the model. 2 1R   means that the model correctly pre-
dicts the true value and all observations fall on the re-

gression line. 2 0R   means that the model predicts the 

true value with poor accuracy, while 2 0R ＜  means 

that there is a lack of linear correlation among the data. 
It is widely used in the field of model prediction evalu-
ation because it does not have a magnitude problem and 
can also compensate for the defect of not being able to 
predict because of the presence of several 0 values in the 
data. The calculation formula is: 
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where ny  represents the arithmetic mean of the de-

pendent variable in the original dataset. 

MAPE is from 0 to positive infinity. When it is close 

to 0, it means that the model’s prediction ability is better, 

while greater than 100% means that the prediction ac-

curacy is poor. The value of MAPE APE( )M  is: 

APE

1

1 N
i i

n i

ŷ y
M

N y


                       (16) 

In this paper, MSER , AEM , APEM  and 2R  are used as 

performance metrics for estimation and prediction ac-

curacy. 

B. Experimental Results and Analysis 

The LSTM, 1D CNN-LSTM, 1D CNN-transformer, 

and 1D CNN-informer models are trained and used for 

capacity prediction using the supercapacitor datasets in 

different operating conditions. As previously described, 

the first 70% of the supercapacitor dataset is used for 

offline training of the models, while the remaining da-

taset is used for online testing. SCs4 and SCs7 are ran-

domly selected as test data for validating the models. To 

comprehensively evaluate the robustness and effective-

ness of the models, the other three methods, LSTM, 1D 

CNN-LSTM, and 1D CNN-transformer, predict the 

RUL of supercapacitors using the same offline training 

strategy, allowing for a thorough assessment of the 

model’s robustness and effectiveness. The predicted 

results for SCs4 are shown in Figs. 6 (a)(h), and the 

specific performance metrics for the four methods are 

listed in Table Ⅳ. Compared to the other three methods, 

the 1D CNN-informer model exhibits predictions that 

are closer to the observed values, indicating higher pre-

diction accuracy. To further evaluate the models, Figs. 6 

(i) and (g) display the box plots of prediction errors and 

the distribution of errors, respectively. Through com-

prehensive analysis, it can be concluded that the pro-

posed model has smaller prediction errors and better 

predictive performance. The predicted results for SCs7 

are shown in Figs. 7 (a)(h), and the specific perfor-

mance metrics for the four methods are listed in Table Ⅴ. 

In different operating conditions, the proposed model 

also exhibits higher prediction accuracy and is closer to 

the observed values. To further evaluate the estimation 

performance of the model, Figs. 7 (i) and (g) respec-

tively present box plots of prediction errors and error 

distributions. As seen, the proposed model has smaller 

prediction errors and better predictive performance. The 

RMSE of the 1D CNN-informer model are 0.0208 and 

0.0224 in the two different operating conditions, indi-

cating higher prediction accuracy than the 1D 

CNN-transformer. In addition, the proposed model 

demonstrates more pronounced advantages than the 

other two models. For the LSTM model, its predictive 

performance is poorer in both operating conditions. This 

is mainly because 1D CNN is better at capturing local 

features, which is crucial for large-scale supercapacitor 

datasets. Therefore the introduction of 1D CNN effec-

tively improves the predictive performance of the model. 

Additionally, since informer is optimized based on 

transformer and has parallel computing capabilities 

compared to LSTM, it has the advantage of improving 

model training efficiency. Also, LSTM has certain lim-

itations in handling long-time series and needs to address 

gradient issues, leading to its limitations in predicting 

large-scale data such as those for supercapacitors. 
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Fig. 6.  RUL prediction results and error analysis of SCs4 super-
capacitor (2.7 V, 3 A, 65 ℃) with different models. (a) RUL 
prediction using the 1D CNN-informer model. (b) Prediction error 
of the 1D CNN-informer. (c) RUL prediction using the 1D 
CNN-transformer model. (d) Prediction error of the 1D 
CNN-transformer. (e) RUL prediction using the 1D CNN-LSTM 
model. (f) Prediction error of the 1D CNN-LSTM. (g) RUL pre-
diction using the LSTM model. (h) Prediction error of the LSTM. 
(i) Box plot analysis of prediction errors for the four models. (j) 
Distribution of prediction errors for the four models. 

TABLE Ⅳ 

RUL PREDICTION ACCURACY FOR SCS4 SUPERCAPACITOR 

Methods MSER  
APEM  (%) 

AEM  R2 

1D CNN-informer 0.0208 0.1878 0.0207 0.9958 

1D CNN- 

transformer 
0.0276 0.1987 0.0266 0.9503 

1D CNN-LSTM 0.0328 0.2418 0.0314 0.9130 

LSTM 0.0391 0.3422 0.0379 0.8841 
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Fig.  7. RUL prediction results and error analysis of SCs7 su-
percapacitor (2.9 V, 3 A, 50 ℃) with different models. (a) RUL 
prediction using the 1D CNN-informer model. (b) Prediction 
error of the 1D CNN-informer. (c) RUL prediction using the 1D 
CNN-transformer model. (d) Prediction error of the 1D 
CNN-transformer. (e) RUL prediction using the 1D CNN-LSTM 
model. (f) Prediction error of the 1D CNN-LSTM. (g) RUL 
prediction using the LSTM model. (h) Prediction error of the 
LSTM. (i) Box plot analysis of prediction errors for the four 
models. (j) Distribution of prediction errors for the four models. 

In addition, experimental data of untrained SCs14 

and SCs15 in different operating conditions are selected 

as test data to further verify the applicability and gen-

eralizability of the model. By calculating the errors and 

comparing them with the actual measured data, the 

superiority of the model can be validated. 

TABLE Ⅴ 

PREDICTION ACCURACY OF RUL OF SCS7 SUPERCAPACITOR 

Methods MSER  
APEM  (%) 

AEM  R2 

1D CNN-informer 0.0224 0.1882 0.0227 0.9948 

1D CNN-  
transformer 

0.0278 0.1997 0.0244 0.9513 

1D CNN-LSTM 0.0324 0.2421 0.0328 0.9124 

LSTM 0.0397 0.3423 0.0384 0.8821 

Figures 8 (a)(d) respectively display the prediction 

results of SCs14 at 2.9 V, 3 A, and 65 ℃. The specific 

performance indicators of the four methods are pre-

sented in Table Ⅵ. 
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Fig.8.  RUL results and error analysis of SCs14 supercapacitor 

(2.9 V, 3 A, 65 °C) with different models. (a) Prediction of RUL 

and prediction error using the 1D CNN-informer model. (b) 

Prediction of RUL and prediction error using the 1D 

CNN-transformer model. (c) Prediction of RUL and prediction 

error using the 1D CNN-LSTM model. (d) Prediction of RUL and 

prediction error using the LSTM model. 

TABLE Ⅵ 

RUL PREDICTION ACCURACY OF SCS14 SUPERCAPACITOR 

Methods MSER  
APEM  (%) 

AEM  R2 

1D CNN-informer 0.0235 0.2822 0.0237 0.9878 

1D 
CNN-transformer 

0.0286 0.3077 0.0304 0.9551 

1D CNN-LSTM 0.0399 0.4318 0.0421 0.8923 

LSTM 0.0461 0.5132 0.0564 0.8803 

Figures 9 (a)(d) respectively display the prediction 

results of SCs15 at 2.7 V, 3 A, and 25 ℃. The specific 

performance indicators of the four methods are pre-

sented in Table Ⅶ. The results indicate that because of 

the untrained data of the supercapacitor in these condi-

tions, there is a relatively large initial prediction error. 

To visually demonstrate the prediction performances of 

different models in various operating conditions, the 

accuracy of RUL prediction for SCs14 and SCs15 su-

percapacitors is shown in Fig. 10. 

 

 

 
Fig. 9.  RUL prediction results and error analysis of SCs15 su-

percapacitor (2.7 V, 3 A, 25 °C) with different models. (a) Pre-

diction of RUL and prediction error using the 1D CNN-informer 

model. (b) Prediction of RUL and prediction error using the 1D 

CNN-transformer model. (c) Prediction of RUL and prediction 

error using the 1D CNN-LSTM model. (d) Prediction of RUL and 

prediction error using the LSTM model. 

TABLE Ⅶ 

RUL PREDICTION ACCURACY OF SCS15 SUPERCAPACITOR 

Methods MSER  
APEM  (%) 

AEM  R2 

1D CNN-informer 0.0248 0.2922 0.0257 0.9867 

1D CNN- 

transformer 
0.0296 0.3377 0.0304 0.9515 

1D CNN-LSTM 0.0429 0.4518 0.0441 0.8913 

LSTM 0.0504 0.5332 0.0594 0.8802 
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Fig. 10.  Prediction error analysis. (a) Bar graphs of the RUL 

prediction error details for supercapacitors SCs14. (b) Bar graphs 

of the RUL prediction error details for supercapacitors SCs15. 

The comparative analysis of the proposed method 

with those from recent publications is presented in Ta-

ble Ⅷ. Clearly, the RMSE values obtained through the 

comparative analysis demonstrate the superiority of the 

proposed approach over other RUL prediction algo-

rithms. As the proposed method integrates the ad-

vantages of 1D CNN and Informer architectures to learn 

global and local features from multiple perspectives, it 

achieves comprehensive information perception. Con-

sequently, the proposed model exhibits better prediction 

accuracy in different operating conditions because 1D 

CNN can extract relevant features from the data, ena-

bling a more comprehensive capture of local informa-

tive details. Therefore it can also achieve higher pre-

diction accuracy on untrained datasets. LSTM has dis-

advantages in parallel processing, whereas although the 

gradient issues of RNN have been partially resolved, 

there are still limitations. Some methods may perform 

well on small-scale datasets but have restrictions in 
terms of magnitude, while the gradient problems are not 

fully addressed. Hence there are certain limitations for 

large-scale data prediction for supercapacitors, resulting 

in compromised prediction accuracy and efficiency.  

Since the positional encoding method has a signifi-

cant impact on the predictive performance of the In-

former model, a relative positional encoding algorithm 

is introduced into Informer to allow the model to better 

learn the sequence relationships between the data, ef-

fectively reducing prediction variations. The proposed 

model demonstrates competitiveness with other models, 

resulting in lower RMSE, MAPE (%), MAE values, and 

higher R2. By extracting local feature information 

through convolutional mechanisms and capturing 

global representations using ProbSparse self-attention, 

the proposed method effectively balances local and 

global information. Compared to other methods, the 

proposed approach combines the strengths of both 

models, resulting in higher prediction accuracy and 

better stability. 

TABLE Ⅷ 

COMPARISON OF RECENT PUBLICATIONS WITH OUR PROPOSED 

METHOD FOR PREDICTING RUL RESULTS FOR SUPERCAPACITORS 

Method References Metric Error 

HHO-LSTM [34] RMSE 0.0301 

TCN [4] RMSE 0.0270 

HGA-LSTM [16] RMSE 0.0294 

Mixers-BTCN [62] RMSE 0.0248 

SSA-Elman [63] RMSE 0.0295 

GPR [64] RMSE 0.0344 

IPSO-BPNN [65] RMSE 0.0351 

1D CNN-informer 
Proposed in this 

paper 
RMSE 0.0208 

With the continuous development of electronic 

technology, in the future all of electrical and electronic 

architecture, the data processing and algorithmic com-

puting functions of the supercapacitor management 

system (SMS) will be transferred to domain processors, 

which have more powerful computational capabilities 

[66], [67]. This will provide opportunities for the prac-

tical application of neural networks [68][71]. There-

fore the comprehensive performance of the above 

methods is analyzed below, with evaluation indicators 

including FLOPs, parameters, training time, and storage 

size. FLOPs are used to measure computational com-

plexity, and parameters indirectly affect the model's 

storage size. The storage size is calculated using the 

os.path.getsize function, while training time represents 

the training efficiency of the model, which is recorded 

using the time.time function. Table Ⅸ presents the 

above parameters for each model. As can be seen, In-

former has a lower time complexity than Transformer, 

and the self-attention distillation mechanism can effec-

tively reduce the temporal dimension of feature maps, 

thereby reducing memory consumption and improving 

prediction efficiency. Compared to LSTM, the proposed 
model does not have an advantage in storage size. 

However, in practical application, the accuracy and 

robustness of the model need to be considered, so a 

reasonable balance should be achieved based on spe-
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cific application scenarios. 

TABLE Ⅸ 

COMPREHENSIVE EVALUATION OF THE PROPOSED METHOD  

Methods 

Performance index 

FLOPs 

(×106) 

Parameters 

(×106) 

Training 

time 

(hour) 

Storage 

size (kB) 

1D CNN- 

informer 
1.201 0.0248 0.196 2212 

1D CNN- 

transformer 
1.223 0.0261 0.223 2436 

1D CNN-LSTM 0.631 0.0075 0.291 976 

LSTM 0.684 0.0045 0.268 762 

Ⅴ.   CONCLUSION 

This study proposes a novel improved 1D 

CNN-Informer model to achieve accurate prediction of 

the RUL of supercapacitors. The model captures local 

details through convolutional mechanisms and obtains 

global representations using ProbSparse self-attention, 

effectively leveraging the advantages of both ap-

proaches. Therefore it can better capture both local and 

global information than other traditional prediction 

methods. Also, this strategy is well-suited for large 

datasets as in supercapacitors. Compared to other 

methods, the proposed 1D CNN-informer model 

achieves higher RUL prediction accuracy, with RMSE, 

MAE, and MAPE values all below 0.4% and R2 values 

above 0.98. The experimental results demonstrate that 

the proposed model has higher accuracy and robustness 

than the others. Additionally, the model exhibits higher 

training and prediction efficiency, indicating further 

research and development potential. This work con-

tributes to the development of intelligent energy man-

agement systems and provides theoretical support for 

the application of supercapacitor systems. While the 

proposed model has advantages in prediction accuracy 

and efficiency, it has higher complexity and requires 

more storage size than LSTM, resulting in a greater 

computational burden. With the continuous develop-

ment of electronic technology, the derived domain 

processors will have more powerful computing capa-

bilities, which will facilitate the practical application of 

neural networks. In addition, the proposed model has 

certain advantages in time series problems and can also 

be applied to similar fields. 

This study also investigates the 1D CNN-LSTM 

model with attention mechanism and the Informer 

model without relative positional encoding algorithm to 

comprehensively demonstrate the performance of the 

proposed model. However, considering the inherent 

drawbacks of these two models, such as long training 

time and slow convergence speed, as well as the lack of 

significant improvement in prediction accuracy, their 

performance is not shown, while several representative 

models that can effectively compare the performance 

between models are presented. 

In future work, it is worth further exploring how to 

reduce the computational burden, improve the conver-

gence speed, and reduce the training time of the model 

while enhancing prediction accuracy and efficiency. 

Additionally, various factors that affect the rate of su-

percapacitor aging, including internal factors such as 

charge-discharge rates and external factors such as 

pressure and air humidity, will be further considered. 

Furthermore, the aging mechanism and RUL prediction 

of supercapacitors will be studied at the system level. 

Compared to lithium-ion batteries, publicly available 

datasets for supercapacitors are limited, and more re-

search is needed to continue improving in this area.  
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