摘要: |
提出了一种基于短时傅里叶变换和DAG(Directed Acyclic Graph)支持向量机的电能质量扰动检测和识别方法。将扰动信号通过Blackman窗短时傅里叶变换,得出时域最大幅值向量,然后把它作为特征向量输入到DAG支持向量机来实现电能质量扰动类型的识别。其中,时域最大幅值向量不仅能反映各种扰动的特征,还能显示电压突升、电压暂降、电压中断和暂态振荡等扰动的发生时刻和持续时间。仿真测试表明,该方法能有效识别各种电能质量扰动,而且识别正确率高,训练时间短,实时性能较好。 |
关键词: 短时傅里叶变换 Blackman窗 特征提取 支持向量机 DAG |
DOI:10.7667/j.issn.1674-3415.2011.01.015 |
|
基金项目: |
|
|
|
() |
Abstract: |
|
Key words: |