引用本文: | 杨兴武,卢 愿,徐浩文,等.基于电容电压预测误差优化的MMC多管开路故障诊断策略[J].电力系统保护与控制,2025,53(7):63-74.[点击复制] |
YANG Xingwu,LU Yuan,XU Haowen,et al.Multiple IGBT open-circuit fault diagnosis strategy for an MMC based on capacitor voltage prediction error optimization[J].Power System Protection and Control,2025,53(7):63-74[点击复制] |
|
摘要: |
由于模块化多电平变换器(modular multilevel converters, MMC)实际模型中采样误差、电路参数不准确等因素,现有故障诊断策略存在鲁棒性差、阈值难选取等难题。为解决上述问题,提出了一种基于电容电压预测采样优化的MMC多管开路故障诊断策略。该策略将逐段误差优化后的电容电压、输出电流和环流作为故障诊断显性特征,利用结构简单、适应力强的一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)作为新的故障定位方案,实现MMC高精度开路故障诊断。所提方法无需增加额外传感器,在故障子模块电容电压变化的初始阶段即可实现子模块多管故障的快速准确定位。相较于现有基于电容电压的诊断策略,该方法极大地降低了系统参数误差,保证了故障诊断网络的鲁棒性。最后,仿真和实验验证了所提故障诊断策略的有效性。 |
关键词: 模块化多电平换流器 误差优化 1D-CNN 开路故障 |
DOI:10.19783/j.cnki.pspc.240505 |
投稿时间:2024-04-25修订日期:2024-07-31 |
基金项目:上海市科技计划项目资助(23010501200);国家自然科学基金项目资助(52207025) |
|
Multiple IGBT open-circuit fault diagnosis strategy for an MMC based on capacitor voltage prediction error optimization |
YANG Xingwu1,LU Yuan1,XU Haowen2,WANG Jiang3,MENG Zhicheng1,WANG Yani1 |
(1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2. Qiqihar Power Supply Company, State Grid Heilongjiang Electric Power Co., Ltd., Qiqihar 161000, China;
3. Baoji Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Baoji 721000, China) |
Abstract: |
Because of sampling errors and circuit parameter inaccuracies in an actual modular multilevel converter (MMC) model, existing fault diagnosis strategies suffer from poor robustness and difficulty in threshold selection. To solve these problems, this paper proposes a multi-IGBT open circuit fault diagnosis strategy based on capacitor voltage prediction sampling optimization. Here the capacitive voltage, output current and circulating current after segmental error optimization are used as dominant characteristics of fault diagnosis, and a one-dimensional convolutional neural network (1D-CNN) with simple structure and strong adaptability is used as a new fault location scheme to realize high-precision MMC open-circuit fault diagnosis. The proposed method can quickly and accurately locate multi-IGBT faults of the submodule at the initial stage of the capacitor voltage variation without adding additional sensors. Compared with existing diagnosis strategies based on capacitance voltage, this method significantly reduces system parameter errors and enhances the robustness of the fault diagnosis network. Finally, simulations and experiments verify the effectiveness of the proposed fault diagnosis strategy. |
Key words: modular multilevel converter (MMC) error optimization 1D-CNN open-circuit fault |