Abstract: |
The ‘mismatch losses’ problem is commonly encountered in distributed photovoltaic (PV) power generation systems. It can directly reduce power generation. Hence, PV array reconfiguration techniques have become highly popular to minimize the mismatch losses. In this paper, a dynamical array reconfiguration method for Total-Cross-Ties (TCT) and Series–Parallel (SP) interconnected PV arrays is proposed. The method aims to improve the maximum power output generation of a distributed PV array in different mismatch conditions through a set of inverters and a switching matrix that is controlled by a dynamic and scalable reconfiguration optimization algorithm. The structures of the switching matrix for both TCT-based and SP-based PV arrays are designed to enable flexible alteration of the electrical connections between PV strings and inverters. Also, the proposed reconfiguration solution is scalable, because the size of the switching matrix deployed in the proposed solution is only determined by the numbers of the PV strings and the inverters, and is not related to the number of PV modules in a string. The performance of the proposed method is assessed for PV arrays with both TCT and SP interconnections in different mismatch conditions, including different partial shading and random PV module failure. The average optimization time for TCT and SP interconnected PV arrays is 0.02 and 3 s, respectively. The effectiveness of the proposed dynamical reconfiguration is confirmed, with the average maximum power generation improved by 8.56% for the TCT-based PV array and 6.43% for the SP-based PV array compared to a fixed topology scheme. |
Key words: Dynamical reconfiguration,
Inverter,
Switching matrix,
Mismatch losses, |
DOI:10.1186/s41601-022-00254-x |
|
Fund:This work is support in part by the Technology Research and Development
Program of Zhejiang Province (2022C01239), the National Natural Science
Foundation of China (52177119) and the Fundamental Research Funds for the
Central Universities (Zhejiang University NGICS Platform). |
|