Abstract: |
Accurate evaluation of power losses in a modular multilevel converter (MMC) is very important for circuit component
selection, cooling system design, and reliability analysis of power transmission systems. However, the existing converter valve loss calculation methods using the nearest level modulation (NLM) method and the traditional sortingbased capacitor voltage balancing strategy are inaccurate since the submodule (SM) switching logics in the MMC arms are uncertain. To solve this problem, the switching principle of the SMs in the sorting-based voltage balancing strategy is analyzed. An accurate MMC power loss calculation method based on the analysis of loss distribution of various SM topologies, including half-bridge submodule (HBSM), full-bridge submodule (FBSM) and clamp double submodule (CDSM), is proposed in this paper. The method can accurately calculate the losses caused by the extra
switching actions during the capacitor voltage balancing process, thus greatly increasing the calculation accuracy of switching losses compared with existing methods. Simulation results based on a practical±350 kV/1000 MW MMC-HVDC system with variety of MMC topologies with diferent voltage balancing strategies demonstrate the efectiveness of the proposed method. |
Key words: Modular multilevel converter, Extra switching losses calculation, Nearest level modulation |
DOI:10.1186/s41601-023-00313-x |
|
Fund:This work was supported by National Natural Science Foundation of China
(No. U1866603). |
|